# GENERAL REPORT ON THE OPERATIONS OF THE <br> <br> GREAT TRIGONOMETRICAL SURVEY OF INDIA, 

 <br> <br> GREAT TRIGONOMETRICAL SURVEY OF INDIA,}

DURING

1875-76,

Prepared for submission to the Government of India.

BY
J. B. N. HENNESSEY, ESQ., M.A., F.R.S., \&C., offg. SUPERINTENDENT OF THE SURVEY.


PRINTED AT THE OFFICE OF THE SUPERINTENDENT $C . T$ SURYEY. M. J. O'CONMOR.

# GENERAL REPORT 

## ON TIIE OPERATIONS

# OF THE <br> <br> gREAT TRIGONOMETRICAL SURVEY OF INDIA, 

 <br> <br> gREAT TRIGONOMETRICAL SURVEY OF INDIA,}

DURING

## 1875-76,

Prepared for submission to the Government of India.


BY
J. B. N. HENNESSEY, ESQ., M.A., F.R.S., \&C., offg., SUPERINTENDENT OF THE SURVEY.


[^0]
# tie operations or tim <br> great trigonometrical survey OF INDIA IN 1875-76. 

List of operations during 1875-76 of the Great Trigonometrical Survey of India showing the pages where they will be found described hereafter in the Report and its Appendix:-

No. I. Trigonometrical. The Madras Coast Series and Ceylon Con- $\left.\begin{array}{c}\text { necting 'hriangulation. }\end{array}\right\}$
II. Trigonometrical. The Operations in the Assam Valley.
III. Trigonometrical. The Secondary Triangulation in Burmah. ...
IV. Trigonometrical. The Eastern Frontier Scrics, Burmah.
V. I'rigonometrical. The Jodlipur Meridional Series and the $\left.\begin{array}{c}\text { Eastern Sind Series. }\end{array}\right\}$
" VI. Spirit Levelling. Operations in Cutch, Kattywar, \&c.
$\left.\begin{array}{l}\text { " VII. } \\ \text { " VIII. }\end{array}\right\}$ Geodetic.
$\left.\begin{array}{l}\text { Electro-telegraphic determinations of Dif- } \\ \text { ference of Longitude. }\end{array}\right\}$
IX. Topographical. The Survers in the Delıra Dún District and in the Siwalik Hills.
X. Topographical. The Survey of Kattyrar.

33-a
20
38-~
" XII. Computing Office. Calculating and Printing Branches.
22
45—a
"XIII. Computing Office. Drawing and Photozincographing 13ranches.
2.4

55_a

Principal Triangulation has been executed by three field parties, viz. Nos. I, IV and V of this report: No. I operated
 along the southern limit of the Coromandel Coast, District Madura, and on the Ceylon Connecting Series; No. IV in Burmah, Province Martaban; and No. V in Rajputana, Baháwalpur and Sind. The angles as usual were measured with great theodolites whose azimuthal circles are 24 inches in diameter and are read by 5 Micrometer-microscopes. The average theoretical probable error of an angle and the average geometrical error of a triangle (i.e. the difference between the sum of the three observed angles of a triangle and $180^{\circ}+$ the spherical excess) are shown in the marginal tahle here given. The total final out-turn is represented by 48 triangles, which if united would exlibit a chain 217 miles in length and 4182 square miles in area. Similarly the total preparatory out-turn executed in advance for 1876-77 is represented by 59 stations and a chain of triangles 270 miles in length. A emplete set of astronomical observations was taken for verification of azimuth. In all 71 pillars, platforms, scaffolds and towers, at stations of observation, were constructed ; 45 stations were closed and protected; and 54 transferred to the care of District Officers.

Secondary Triangulation has been performed as usual by the field partics Nos. I, IV and V above named, and in particular by No. V which completed a very considerable chain in Rajputana designated the Balmer Series. In addition, Nos. II and III have been employed, exclusively, as during the preceding year, in conducting special series, for the determination of prominent points, respectively in the Assam valley and in Burmali, where known points, on which to base other surveys, are much needed : these special series, it must be understood, are classed as secondary, in the sense that their angles are measured with smaller and more portable instruments, read by verniers, in place of great theodolites; otherwise these chains of triangulation are carried on with every due care and precision. Besides the above mentioned field establishments, the topographical survey parties in Guzerat, Kattywar and Dehra Dún have continued their operations, in closely covering the country about to be delineated with the points of secondary triangulation essential for topographical purposes. The total out-turn of all the field parties is represented by 363 triangles in which the three angles were measured; of these triangles 103 were disposed in series, which if united would exhibit a chain 439 miles in length; besides, over 3000 triangles were established for fixing points. The total area covered by all the precoding triangulation amounts to some 9000 square miles, of which 3500 were closely dotted with points for the topographical surveyor; further, the area included ly other triangles to distant hill peaks amounts to nearly 7000 square miles. Of heights, 633 have been determined trigonometrically, and 245 differentially by means of the Aneroid barometer. And as regards pillars, and other forms of construction for stations of observation, 220 such structures bave been built.

Topographical Operations liave been conducted by field parties Nos. IX, $X$ and XI, respectively, in Dehra Dún including the Sisálik hills and Jaunsár Báwar, Kattywar and Guzerat. The area delineated on scale 4 inches $=1$ mile amounts to 1047 square miles, and on scale 2 inches $=1$ mile to 3629 square miles: in course of these operations about 2900 miles of boundaries and check lines have

[^1]been traversed with the claain, and some 1800 points fixed by the same means, subject to trigonometrical checks, in localities unsuited for triangulation. As regards the province of Guzerat, it having been decided by the Government of India, that in future the scale of survey should be restricted to the 2 -inch scale, further delineations on scale 4 inches $=1$ mile will be discontinued.

Surveys Completed. The operations under review are so far distinctive in feature, that by their means no less than three separate surveys have been conducted to final and satisfactory completion : viz., the Jodhpur Meridional Series of principal triangles on the meridian of $72 \frac{1}{2}^{\circ}$, running through the Jodhpur, Jesalmer and Bikaner States of Rajputana and Baháwalpur; the topographical survey of the well known and beautiful valley of Dehra Dún, including its outlying subdivision of Jaunsár Báwar and the Siwálik hills; and the Ceylon Connecting Series. By means of the latter, complete unity can now be introduced between the surveys of Ceglon and India, and the required electro-telegraphic measures, in uniting India and Greenwich longitudinally, will now also establish a similar connection for Ceylon.

Spirit Levelling Operations, chiefly in Cutch and Kattywar, Bombay Presidency, have been carried over $4 \div 1$ linear miles, passing through the towns of Rájkot, Muli, Wadhwán, Viramgám, Pátri and Ahmedabad; 166 Bench-Marks were established along the course followed. The results obtained, from the line of levels executed in 1874-75, connecting the three tidal stations of Okhá, Nawanár and Hanstal on the Gulf of Cutch, appear to indicate, that the mean sea level stands progressively higher, as the tidal station is further removed from the open sea up the Gulf.

Calculations and Publications. The subsidary computations of the Sectional Figure South-East Quadrilateral lave been completed; also materials for the 6 Synoptical Volumes of this figure have been well advanced : considerable progress has been made in printing all the preceding results, so that a large portion of the pages for 2 Principal and 6 Synoptical Volumes stand passed through the press. The Synoptical Volume which treats of the North-West Himalaya Series has been published, and Principal Volumes III and IV have been bound. A large portion of the North-East Quadrilateral has been reduced by the method of least squares. As regards Cartographical publications, 7 Numerical Charts of 'Iriangulation and 8 of Spirit Levelled Heights, 43 Maps Topographical and 3 of Explorations, besides minor subjects, have been printed and issued: in all 2,475 Charts, 7,931 Maps and 18,000 Professional forms have been supplied.

Miscellaneous. In all 2,725 principal stations situated in 313 districts have been protected and placed under the care of District officers during the past 11 years. Meteorological observations have been taken trice a day throughout the year and the results communicated to the Reporter to Goverument North-West Provinces. The Records and Library have been maintained in good condition. \&c., \&c.

Retirements. The department has suffered serious loss by the retirement of its Senior Deputy Superintendent, Colonel T. G. Montgomerie, R.E., F.R.S., aud of Mr. W. C. Rossenrode, Deputy Superintendent 3rd Grade; the latter event stands alluded to in art. (49) ; the omission of the former would leave this report incomplete, notwithstanding that the present opportunity admits only of very brief notice. Licutenant Montgomerie entered the department in October 1852: soon after he was present at the Base-lines of Chach and Karáchi, in both of which measurements he took a leading share; besides other work, in 1855 he commenced the Topographical survey of the dominions of His Highness the Maharaja of Kashmir, which he finished within the next 9 years. The scale adopted was suitably varied from 2 to 8 miles per inch; the area included some 20 square degrees, or about 77,000 square miles, on which stand the stupendous mountain ranges of Káríkuram, Chángchenmo, Bárálácha, Mustágh, © ©e.; the chicf towns fixed were Jummoo, Srinagar, Leh, Skardo, Hanle, Muzaffrabad, Kishtwár, Bhadrawár, Marrímíka, Dris, Bij Behara, Naushahra, Rajauri, Kargil, \&c.; the principal rivers traced were the Indus, Jhelum, Chenah, Zanskar, Sheok, Kishanganga, Astor, Káuákásh, \&c.; and of snowy peaks (rising from 16,000 to
the culminating licight 28,250 feet of peak at N.E. head of Báltoro Glacier) may be mentioned, Nanga-Parbat, Harámukh, Haramosh, Rákipúshi, Ser Mer, Kárákuram, Bárálácha, \&c.: the area of Glaciers extended over more than 1,400 square miles; and the heights ascended, surpassed those recorded as reached by man unaided by balloons.* Lieutenant Montgomerie's name will long continue to be most honorably associated with these operations, which for magnitude, merit and importance are at least unsurpassed.

Returning in 1866 from an absence on furlough for two years, Captain Montgomerie directed the survey of Kumaun and Garhwál with much success. As respects local surveys, those of Mussooree, Kosi Valley and Ránikhet were conducted by him: the last presents an instance of uncommon despatch; it was begun in January 1870 and its 11 maps stood published in the following November. Lastly, he superintended the Trans-Himalayan Explorations, which have contriluted so largely to our knowledge of countries that before were almost unknown. It is exccedingly difficult to give an idea of the provinces thus pierced or circumscribed; a brief attempt is lowever made in the following descriptions of the routes traversed. From Kumaun, northwards to the sources of the Sutlej and Indus, and along a great length of the Brahmaputra eastward through Great 'libet to Lhasa. From Darjeeling, westward to Katmandu, thence over the Dingri Maidan to Shigatze in Great Tibet, onwards in a north-easterly direction round the Tengri Nur Lake, and then southwards to Lhasa. From Kabul via Bámián and Balkh to Faizabad and Kila Panjah, thence onwards through the Pamirs to Yárkand and Kaslıghar in Eastern I'urkestan, and so back to the Kárákuram pass. From Balkh near the Oxus to Karshi and Bokhara. From Pesháwar to Dír, Chitrál and Zebak in Badakshán. \&c., \&c. These routes represent a total length of fully 4,500 miles, along which, at least, our geographical knowhedge has been sulstantially established.

Lastly, Colonel Montgomerie officiated as Superintendent of Topographical Survey for a while, and as Superintendent of the Great Trigonometrical Survey for 2 ycars : in addition, his services have repeatedly been honorably mentioned by the Secretary of State and by the Government of India: nor are distinctions at home wanting, for he is a Gold Medallist of the Royal Geographical Society as well as a Frllow of the Royal Society. His distinguished services in this Department will long be remombered in connection with his works, and many kind wishes, from those with whom he was here associated, will continue to follow him in his retirement.

Superintendence. The work above summarized and hereafter reported on, was exceuted under the directions of the Superintendent, Colonel J. T. Walker, R.E., F.IR.S., who, proceeding on furlough in April 1876, was succeeded by Captain 1L. R. 'lhuillier, R.E., to act in his place. Subsequently on my return from furlough, I was appointed by the Government to relieve Captain Thuillier as Officiating Superintendent: 1. accordingly received charge on 1st November 1876 and the duty of preparing this report devolved on me.

Explanatory. It only remains to add the following explanatory remark. In compliance with orders received, the Narrative Reports of the Kattywar and Guzerat Survey parties were submitted to Government in original about the first weok in last November; this review was commenced soon after, and in due course complited, so far as was practicable in the absence of the Narratives; these were received back on 20th ultimo. Meanwhile, Colonel Walker having resumed charge of the department, my ability to finish this report is due entirely to his courtesy.

## J. B. N. IIENNESSEY.

## Depuly Superintendent lst Grade.

Derra Dun:
late Officiating Superintendent. Dated 1st Mrarch 1877.

[^2]
## NO. I.-TRIGONOMETRICAL.

## the madras coast series and ceybon connecting triangulation.

(1.) The Rámnád Longitudinal Series, as explained in previous reports,

## Perbonnel.

Mujor B. R. Branfill, Deputy Superintendent 2nd Grude.

Mr.G. Belchum, Survegor 4th Grade.
" O, D. Potter, Assistant Surveyor 1st Grade.

Mr. E. W. Loseron, Asst. Surveyor 2nd Grade.

Mr. A. Bryson, Asat. Surveyor 3rd Grade. is hased on a side of the Great Arc Series; from whence it proceeds along the parallel of $9 t^{\circ}$ in an easterly direction, and terminates at the polygon of Ut tarakoshamangei, or, more briefly, at the Rámnád polygon, since one of the stations belonging to this hexagon is fixed on a bastion in the fort of Ramnád town. Again, from a southerly side of this figure, the Ceylon Connecting Series with suitable shortened sides continues in an easterly course up to the land's end, the intention being that this chain of triangles should be extended across the Palk Strait, so as to establish on the island of Neduvan suitable stations for the Surveyor General of Ceylon to connect the triangulation of that island with. Up to this stage, the operations were duly reported on in 1873-74.
(2.) During the year 1874-75 Major Branfill proceeded to complete the Ceylon Connecting Series. Also, adopting the northern side of the Ramnád polygon as a base, he finished the first portion of the Madras Coast Series, which, it is intended, shall proceed from Kámnád along the eastern coast and join on to a side of the principal triangulation in the vicinity of Madras. I'aking the field early in October, the camp in due course reached Salem : here cholera of a virulent type broke out amongst the men; three deaths occurred, and the District Coilector put the establishment in quarantine. On this a panic ensued and a breaking up of the party from desertions became imminent: in brief, Major Branfill had considerable difficulty in reorganizing his camp. Eventually he arrived in safety at Madura, where, dividing his establishment into five working parties, he in the first instance vigorously prosecuted the approximate operations on the Madras Coast Series. Here the country at first was barely passahle, being still flooded by the late autumnal rains; however by dint of incessant hard work the required preliminaries for two bexagons were completed in course of two months. Having now arrived at the end of January, Major Branfill commenced the measurement of the principal angles, by himself taking the usual set of circumpolar star observations at the central station of his northern polygon. After this he entrusted the principal observations to Mr. Belcham, who under Major Branfill's care and instruction has proved himself a competent observer with the large theodolite; and deputing two of his assistants to continue the approximate work for next year along the coast, he proceeded to lay out the extension of the Ceylon Series, and finished this work by the end of March. Mr. Belcham followed with the great theodolite and under Major Branfill's supervision completed the required measurement of the principal angles.
(3.) The work thus performed consists of two hexagons on the Madras Coast Series and of a hexagon and a quadrilateral on the Ceylon Counecting Series, forming in all a chain of triangles 80 miles in leugth and including observations at 21 principal stations. One of the latter gave much anxiety from a singular cause: it was on Ramesweram Island and had been fixed there in 1873-74; the old station however had disappeared, so a new one was established; this had to bo watched and protected against the strong wind, which literally blew away some 4 or 5 inches of the surface daily. As regards ray cutting, no less than $3 \neq 8$ miles of these lines were cleared, a duty which would have involved far greater time and expense, but for the economical and effective contrivances introduced by Major Branfill for raising the signals as well as the large theodolite to the greatest reliable heights, so as to overlook the lower portion of the foliage with which the country is densely covered. And to provide a sufficient start in the succeeding year, an approximate series of 10 stations was laid out for 36 miles in advance. As alicady stated, a verificatory azimuth was observed.
(4.) Major Branfill's duties were carricd on under unusual difficulties. The stations of the Ceplon Series were necessarily all on islands, and visits to these, involving as they did voyages by sea, were not unattended with danger, siuce this department could not afford to employ better means of transport than those offered by the common open country boats. The series las been laid out with considerable care and skill and the completion of this connecting link between the triangulations of Ceylon and India is a matter for congratulation, not only ou the score of its having been well achieved, but in that it meets a long existing desideratum: complete unity can now be introduced between the triangulations of Ceylon and India, and the required electro-telegraphic measures, believed to be not far distant, in connecting India with Greenwich, as respects longitude, will now also establish a similar connection for Ceylon: the ultimate stations fixed by Major Branfill on the island of Neduvan, are those of Amanakkamunai and Urimunai, which afford the required means of junction to the Surveyor General of Ceylon. As respects the operations on the Madras Coast Series, the figures are symmetrical and the work well executed. In concluding this notice it is only just to Major Braufill to add, that his success has been achieved under the unavoidable difficulties presented by the country and climate, and those attending lis own failing bealth.
(5.) Major Branfill loaving obtained furlough, made over charge of his party on 9th May to Captain W. M. Campbell, R.E, who directed the computations during the recess in addition to his other duties.

NO. II.-TRIGONOMETRICAL.

## the operations in the assam valley.

As.was stated in the Report for 1874-75, Lieutenant Farman's services were required with the Daphla Field Force

## Prisonymi.

Licut. II. J. Marman, R.E., OHg. Assist. Superintendent 2nd Grade.
Mr. W. O'Sullivan, Survegor 4th Grade.

Mr. E. P. Wrison, Aesist. Surreyor 2nd Grade.

Mr. J. F. McCarthy, Assist. Survegor 4th Grude.
for a longer period than lie had anticipated when arranging for the prosecution of the Assam Valley triangulation during his alsence. Thus on resuming trigonometrical operations in March 1875, he found it impracticable to complete the final observations at all the stations selected, before the setting in of the rains and the consequent termination of the field season. On visiting the remaining stations after the recess, the shoots from tree stumps, bamboos \&c. had sprung up to an "astonishing height" on the rays which had been cleared only a few months before, and it became necessary in the first instance to re-open no less than 37 miles of such rays. Proceeding vigorously with the operations, Lieutenant Harman and his assistants succeeded by the end of the season, in advancing the scries finally from near Sibsigar to a little beyond Dibrugarh, or a direct distance of 41 miles. Rays were also cut to the treasury building at Jorhat, so that its position and height were fixed. Aud as regards Dibrugarl, the church tower at this place was adopted as one of the principal stations of the series. Further, five Revenue Survey pillars were incorporated with the triangulation. And lasily, all the hill peaks north of the Brahmaputra valley, visible from Dibrugarh church tower were fixed.
(7.) From Dibrugarh, the approximate triangulation was continued in two branches. Of these, one proceds in a south-ensterly direction and connecting with. Jeypur terminates at the side Deohal Revenue Survey pillar to Hilika llill station, which is also a station of the Topographical Survey and stands on a spur of the Nágit Hills; the series consists of a clatin of 8 triangles. The other and principal brauch of the triangulation procceds north-casterly, spanning the Bralmaputra river up to Sadiya, where it terminates at the side Sadiyn Quarter

Guard station to Dikrang Martello Tower station; this series consists of 14 triangles, besides a succession of 3 triangles which are built up like a fan with the Nari Hill as a pivot. This hill being some 600 feet in height, its adoption as a station would carry the series over the difficult waste lands of Paropora both economically and expeditiously. Both these series seem to be well laid out and promise a speedy termination to the operations under Lientenant Harman's guidance, provided the few long rays do not lead to delay in the final observations.
(8.) The object of adrpting the hill Nari as a station is apparent from what has preceded; besides, there is a hill called Pogrosoi, some 15 miles S.W. of the former, which is also highly desirable as a station of observation; because these two hills conjointly present an excellent base for survey purposes if required hereafter, as well as suitable eminences from whence a considerable area of unknown country could be sketched now. Unfortunately both the hills are within Abar territory and therefor may not be visited without the consent of their owners. Being however impressed with the necessity for obtaining access to these hills, Lieutenant Harman, in consultation with the Deputy Commissioner, communicated with the chiefs in question, so that they assembled to meet him with the avowed iatention of granting the required permission. The resulting palaver however ended in disappointment, for "each Albar chief" writes Lieutenant Harman "stood forward in turn and forbade the journey: they did not much object to my going alone provided I made no map for the Queen to see," and so on. Subsequent correspondence through Government leaves it probable that the Abar chicfs in question may yet be induced to permit a visit by Lieutenant Harman to the Nari and Pogrosoi hills.
(9.) In all, the anrles of thirteen triangles have been finally measured; 35 stations have been selected; 12 post and pillar stations were constructed; and besides other work, 194, miles of rays were cleared under circumstances which make progress in such an operation slow and laborious. Lieutenant Harman's out-turn of work is not only large, but so far as I have the means of judging, it has been well executed. The progress made is very creditable to Lieutenant Harman, who was well supported by two of his assistants, ciz. Mr. O'Sullivan and Mr. McCartly.

## No. III.-TRIGONOMETRICAL.

## THE SECONDARY TRLANGULATION IN BURMAH.

(10.) This secondary triangulation, it will be remembered, was designed irith
W. at Beverler, Esq., Offg $\Delta$ ssialant Suparintendemt. int. Grade.

Mr. J. I.nw, Surreror 2nd Arode. J, W. BLithent, Surreyor fth Ornile.

Mr. D. J. Colling, Abst. Survesor 4 th Grade.
the view of fixing all prominent buildings aud other oljects in large towns and elsewhere for the purposes of topographical and geological surveys, while lighthouses \&c. along the coast were also to be determined in position for the Marine Survey. The required operations were again conducted by Mr. W.G. Beverley aided by the assistants who were under his directions during the previnus year and, in addition, by Mr. J. Low, whose services were transferred to the party in order to ensure greater progress and thus to meet the urgent demand which exists for trigonometrical data in Burmah. Mr. Beverley was thus enabled to set three detachments at work in the field, wherely he not only resumed the triangulation begun the scason before but exteuded his operations in other directions as well.
(11.) The Sories commenced last year was projected to pass soutliwards through Pegu and Rangoon, but notwithstanding several attempts made, it was found impossible to connect the work with the principal stations of the Eastern Frontier Series, owing to the unfavourable state of the atmosphere which prevailed.

In fact, a sensible portion of the country appears to be under water at the commencement of the field season, and mist and haze greatly delay observations towards the termination of the operations; under these circumstances the surveyor needs to make the most of the interval, and even this is beset with unusual difficulties, as may be gleaned from Mr. Beverley's narrative. Notwithstanding, the required junction above alluded to was effected; further, this series after fixing Pegu and Rangoon was extended to China Bakir: here the old light-house had given place to a new one constructed some 5 miles out at sea; so that it became necessary to open new rays to the new structure, and to this end it was essential to take angles at the old light-house before its demolition. Mr. Beverley performed this duty in person after "wading through a mile of mud and water under a burning sun," and thereby incurred an attack of malarious fever. Approximate operations on the series were subsequently continued along the coast towards Krishna Shoal light, which under favorable circumstances may be reached during next year. The position of China Bakir light-house was supplied, so soon as known, to the Master Attendant.
(12.) Of new series, one was based on the side Myá-yábengkya H. S. to Theyekhír H. S. of the Eastern Frontier principal triangulation, and the selection of stations and other preliminary work carried on up to Tounghoo Pagoda; but this work being commencod late in the season, the haze and rainy weather soon after set in and final observations could not be completed at more than one station. It is intended that the chain of triangles should turn westward on reaching the Boundary north of Tounghoo and, following this limit, should hereafter be connected with another series, also projected in 1875-76, which spans the Irrawaddy river north of Thayetmyo.
(13.) The series last mentioned commences a little north of Thayetmyo; it proceeds along the Irrawaddy and fixing Prome passes on southwards: in a direct distance sixty miles were completed last year of this triangulation, by which moreover numerous points were determined in the civil stations of Thayetmyo and Prome, a large number of heights were obtained and an area of some 3600 square miles covered with trigonometrical points for after purposes of internal surveys: means have also been afforded of making a connection with the line of railway, for the purpose of providing the latter with a reference to sea level. The country passed over is described as densely wooded and well populated.
(14.) The last series projected in 1875-76 remaining to be noticed, is one which Mr. Beverley executed in person, in addition to a general supervision of all the other operations: it commences on the Irrawaddy a few miles north-west of Myanong and proceeding generally in a southerly direction is intended to fix Bassein and to be continued to Cape Negrais. The main ridge of hills in the Henzada district could not be utilized, while the spurs from this ridge were too densely wooded and too short to admit of their being turned to account: eventually Mr. Beverley contrived to find his way between the river and the hills, chiefly by adopting the contrivance of basing his triangles alternately on flank rays all on one flank and cross rays, so that visibility along the other flank, which was impossible, was dispensed with. In a direct distanoe 81 miles were completed of this triangulation, thus bringing it down to within 32 miles of Bassein.
(15.) Mr. Bererley and his assistants have executed a very satisfactory amount of work and their success is all the more creditable that they have been beset with more than ordinary difficulties.

## the eastern frontier series, burmah.

(16.) The principal olscrvations on this series were resumed at the carliest

## Personnal.

W. C. Rossenroile, Fsq., Deputy Superintendent ard Grade.

Dr. H. Dererley, Sure. Ist Grade. " J. C. Cluncey, Assistant Surveyor ard"Grade.

Mr. J. O. Hughes, Assistant Surveyor 3 rd Grado. possible date in order that the work should be completed, at least where the long rays occur, before the inevitable hazy weather set in. Accordingly Mr. Rossenrode with the great theodolite took the field on 20 th October; the country however was still under water, so that it was impossible to proceed along the land by marching in the usual manner: hence the entire party, with instruments, baggage, and provisions, embarked in boats, and were thus transported from the vicinity of one station to that of another until 8 stations had been completed. Arriving now at Amherst Mr. Rossenrode was able to resume his ordinary mode of locomotion on land, subject however to the usual difficulties which Burmah as yet presents to travellers. He was so far fortunate on this occasion, that the trunk road to Yelı and Tavoy fell within his operations, for though only partially finished it afforded to his party the unusual luxury of travelling along a comparatively made highway. Ordinarily Mr. Rossenrode's marches were made along foot pathis cut originally by one of his own detachments in proceeding from a known station towards one as yet unknown; and not only had they no alternative in adopting these forest tracks as roadways, but in the absence of all other lines of communication they had occasionally to march back no inconsiderable distances along gaps of this kind, in order to fall into some other opening which would again conduct them in a forward direction. As to crossing the rivers where they occurred in the interior of the country, the only mode of transport offered was in the form of canoes, which however well suited to the wants of natives of the country (whose wardrobe as described by Mr . Rossenrode consists of a suit or two of palm leaf apparel) "sway, roll, and capsize" but too readily if occupied by men like ours unaccustomed to such boats. Pushing on howerer with his usual perseverance Mr. Rossenrode eventually found himself at the last station of the season, but only in time to be enveloped by the haze; whereupon he resolutely sat down to wait for rain, which rewarded him with heavy fills, so that the atmosplere having cleared be finished his observations and marehed into recess quarters at Moulmein.
(17.) Mcanwhile the approximate and secondary operations were vigorously prosecuted by Mr. H. Beverley, assisted by Mrssrs. Clancey and Hughes. As the pioncer of the whole establishment and enveloped in dense jungle Mr. Beverley frequently cut his way from station to station, compass in hand, followed by his camp equipage. Creeks and tidal streams added as usual to his difficulties, and when at last mounted on the required hill top, he had arrived only at the beginning of a laborious task which involved clearing the site of heavy trees so as to obtain a view around. Proceeding in this manner, he found himself in the vicinity of Yeh, where the strip of British territory is only some 25 miles from sen to Boundary, and the hill of Yetagumline obstructs the view across; under these circumstances he formed a tetragon round the hill, and being thus enabled to continue his progress, he selected an additional double polygon to complete the season's work.
(18.) In respect to general progress made:-principal observations were commenced at the Kathbatong hexagon, about 48 miles north of Moulmein, and were carried down to within some 24 miles north of Yeh, covering a direct distance of 116 miles. The chain thus completed comprises a hexagon, a pentagon, and a heptagon with an internal transverse ray, besides rather more than half of the succeeding figure around Yebudong hill station. In at least two instances Mr. Rosseurode overcame no ordinary difficultics in carrying the great theodolite to the required summit. At Wabiantong the road occupied a detachment a whole
month to fit it for a passage for the instrument; notmithstanding, the ascent proved a perilous undertaking, and when achieved it was found impossible to pitch the observatory tent. A hat supported by poles jammed into fissures between rocks was aceordingly adopted as shelter for the theodolite, but the structure was so manifestly insecure that observations were taken only during the day and the instrument packed up every evening. In fact, as Mr . Rossenrode briefly remarks, one face of the hill was so perpendicular that its base could be seen from its summit. It was however at Kamakabo that he overcame almost insuperable difficulties in transporting his !reat theodolite to the hill summit. The hill was very precipitous with sharp projecting rocks which jutted out in every direction; it was as impossible, with his very limited means, to remove these rocks, as it mas to make a road in and out around them : as a last resort, lailders from 16 to 40 feet in length were stretched from rock to rock, and along these ladders he effected a most perilous ascent and descent with no little courago. His great theodolite though one of the lightest of its class weighs 618 tbs, and its smallest case is 300 ths in weight. "It was a day of rejoicing" says Mr. Rossemrode "when the instrument was brought down in safety". Of further progress; the approximate work of the season supplied a portion of the preceding figures: beginuing with Konlah on the island of Bologyon, the selcction includes the pentagon and succeeding fgure already mentioned, a tetragon, and a double polygon, comprising in all a direct distance of 100 miles: 12 stations in advance renain as a commencement for next season's principal observations. Lastly, by means of secondary triangles, Martaban, Moulmein, Amlierst, Double Island lighthouse, \&c. have been amply determined, besides that the prominent peaks along the series have also been fixed.
(19.) Under favorable conditions Mr. Rossenrode's out-turn of work would be considered as a creditable performance; but circumstanced as he was under many disadvantages, he has earned my best commendations. This is Mr. Rossenrode's last contribution to the operations of the Great Irigonometrical Surrey of India, for worn out with a long scries of arduous and successful achicrements he has recently retired from duty, recommended for a special pension in consideration of his good services. Mr. W. C. Rossenrode entered this department in 1839, when it was under the direction of Colonel G. Everest R.A., (afterwards Sir G. Everest, C.B.); subsequently he served under Colonel A. S. Waugh, R.E., (now General Sir Andrew Waugh) ; and since 1861, under the present Superintendent, Colonel J. T. Walker, R.E: he invariably conducted himself so as to win their confidence and good opinion. He also served with credit on the Budhon, Rangir, Pilibit, and Maluncha series. In 1848 Mr . Rossenrode was selected to lay out the approximate triangulation of the Great Longitudinal, stretching across the desert from Sironj in Central India to Karáchi in Sind; and it was here, under the orders of the late Colonel A. Strange, F.R.S., that he first carned the title he has since so well maintained to rank as one of our most valued pioncers; he lead the way for Colonel Strange's operations in a manner which elicited that officer's highest commendations. Later on, he selected the Karachi base-line of verification, and continuing to rise in the department he first succected to the charge of a field party in 1859. Mr. Rossenrode has since acted as the leader of one of our field establishments for nearly 17 sears: during that period he has covered many a district with triangulation and in doing so has travelled many a housand miles. The greater portion of his services have moreover been rendered in difficult ground, often through dense and uninhabited forests, sulject to many dangers, including injury from wild beasts, attacks by predatory tribes, and but too frequently to the deadly and lasting influence of malaria. Through all these, Mr. Rossenrode has worked earnestly and well, and now that the time has arrived when he can toil no more, he leares the ilepartment accompanied by many good wishes that he may long enjoy the reward of his labors in a repose so honorably wou.

## NO. V.-TRIGONOMETRICAL.

## the jodhpur meridional series and the eastern sind series.

(20.) The duties devolving on Captain Rogers were peculiar in the cir-

## Pebsonnil.

Cuptain M. W. Rogers, R.E., Ofg. Depuity Euperintoulent 3ry Grade.
Mr.' W. C. P'rice, Surveyor 4th Gride.
D1r. C. P. Torrens, Assistant Surveyor 3rd Grude.

Mr. P. IF. Prunl.j, Assistant Surveyor thin Grade.
cumstance, that he was required successively to prosecute operations which were separated by $2 \frac{1}{2}^{\circ}$ of longitude : in the first instance he was desired to complete the Jodhpur Mcridional Series on the meridian of $72 \frac{1}{2}^{\circ}$, and then to begin a new chain of principal triangles, on the meridian of $70^{\circ}$, terminating to the north at the Great Indus Series and to the south at the Karacli Longiludinal Scries. The new triangulation was named the Eastern Sind Series.
(21.) The late and very heavy rains delajed the arrival of stores and men essential for Captain Rogers' field operations; he therefore applied all his available means in starting his assistants, while he proceeded to Decsa, where, at the request of the Government of Bombay and in compliance with the suggestion of the Meteorologist to the Govermment of India, he inspected the Metcorological Observatory, reported on the same, and laid out a short triangulation in order to connect the observatory and telegraph office with the Karáchi Longitudinal Series. Marching next to the northern terminus of the Jodhpur Meridional Series, he completed the remaining approximate work of the terminal double polygon, and then proceding with the measurement of the principal angles he fiuished these operations by the 3rd January.
(22.) Subsequently Captain Rogers marched across to the proposed northern terminus of the Eastern Sind Series with the view of commencing the required triangulation at that end, while Mr. Price was deputed to operate similarly at the southern terminus. Unfortunately the river Indus had washed away several of the old stations about the most convenient locality, so that Captain Rogers was obliged to adopt an initial side west of the given meridian : gradually working on to the required meridian and then turning southwards, he at first had to operate on a country quite flat and covered with dense tree and grass jungle; but pushing onwards through these difficulties, he arrived in a region of sand hills which promises suitally clevated sites and corresponding facilities for the operations next season: his approximate work was closed at the commencement of this hilly region. At the southern terminus Mr. Price was at first unfortunate in being prostrated, with all his men, by fever, so that they resorted to Deesa for medical aid: on recovery from this attack, he made effective progress in advancing the approximate operations northwards. Mranwhile a third detachment under Mr. Torrens began and completed an extensive series of secondary triangles, named the Baliner Minor Series.
(23.) On the Jodlipur Meridional Series, the final angles were measured at 9 prineipal stations, of which 7 had first to be selected and otherwise prepared for observation: this work completed the terminal double polygon, 21 miles in direct length, which remainci to bring the chain of triangles to a conchusion. The series thus begun and finished by Captain Rogers originates at a side of the Karáchi Longitudinal Scries, from whence, stretching across the intervening distance of 311 miles, it joins on to the Sutlej Sories in the same longitude as it was begun, i.e. $72 \frac{1}{2}^{\circ}$ : the country included is plentifully dotted with sand hills lying on a waste of sand, but though on the one hand these hills facilitated the operations by presenting elevated sites for stations, on the other, occuring as they do in countries thinly populated and but very scantily supplied with water, Captain Rogers' task on the whole was so arduous that he deserves every commendation for having completed it with success : in the most arid portion of the tract surveyed but three wells of drinkable water were found in a distance of 70 miles.
(21.) On the Eastern Sind Serics, the operations were intentionally re-

[^3]stricted to approximate work : this has been prosecuted vigorously both from north and south; in the former case for 24 miles, comprising 8 stations; in the latter for 110 miles including 24 stations. Although from the primary nature of the work it cannot be exhibited on the chart of final opemations which precedes this report, yet it is not to be reckoned the less to the credit of Captain Rogers, who with this excellent start will probably make a very considerable impression next scason on the entire series. The secondary triangulation executed on the Balmer Series is $\mathbf{1 5 2}$ miles in length; it fixes 95 points both in gengraphical position and height, including three important Revenue Survey stations and other prominent and desirable objects.

## NO. VI.-SPIRIT LEVELLING.

OPERATIONS IN CUTCH, KATTYWAR, \&c.
(25.) During the portion of the recess which remained when submitting his

Personnel.
Captnin A. Baird, Re, Offg. Aesistant Superintendent lat Grade.

Mr. 'I'. H. Rendell, Assistant Surrejor 1 si Grade.
Nursing Dass and otber Sub-Surreyors. report on the operations of $187 \mathrm{t}-75$, Captain Baird continued to occupy himself with the final reduction of the registrations at each tidal station, and before the resumption of field duties obtained the results which are given in paras. 2 and 3 of his narrative report. He also reduced his spirit levelling operations carried along both sides of the Gulf of Cutch, wherrby, it will be remembered, the three tidal stations of Okha, Hanstal, and Nawanár were connected with one another. He was thus in a position to compare the three mean saa levels determined at the tidal stations by means of the differences of height between these stations obtained by spirit levelling; and proceding in this mamer, it will be seen, that reckoning the Bench Mark A at Hanstal as clatum, the following values of mean sea level may be exhibited :-

Values of mean sea level below the B. M. A at Hanstal tidal station
fref.
as observed by tidal observations at Hanstal
$9 \cdot 702$
as deduced from tidal observations at Nawanár by means of the spirit levelled difference of height

9•89́ㅡㄹ
as deduced from tidal observations at Okha by means of the spirit levelled difference of height
$10 \cdot 273$
from which it appears that, provided the spirit levelling is taken as errorless, the mean sea level at Hanstal is higher than that at Nawanár by 0.193 feet, and the mean sea level at Nawanar higher than that at Okha by 0.378 feet. Of these stations it will be remembered that Okha stands furthest out to seaward on the southern margin of the Gulf of Cutch; that Nawander is about half up the gulf and on the opposite coast; and that Hanstal is at the head of the gnlf. It thus srems that the mean sea level stands progressively higher as the station of ohservation is removed up the gulf. Apart from these facts, the table of tidal results given by Captain Baird shows a close accordance between certain values of mean sea level at the same station; viz., the value obtained from $12 \frac{1}{2}$ lunations in comparison with that derived from the 2 lunations which occur from March to May ; an agreement which Colonel Walker preclicted as very probable.
(26.) On taking the field Captain Batird divided his establishment into two portions, each including two levellers; one of these parties was placed under Mr. Rendell, the other Captain Baird retained under his own charge: both parties were to commence work at bench-marks established the previous season on the line of levels connecting the three tidal stations. Captain Baird commenced with the main line at Jorya, and proceeding south-easterly continued generally in this
course to Rájkot; from here turning north-easterly he passed through Chotila, Muli, \&c., and arrived at Wadhwán: from the latter place the line was run along the Bombay Baroda and Central India Railway to Viramgám, and from thence viâ Ahmedabad to Melımadabad; branch lines being projected as usual where required. Mr. Rendell began work with the loop line at Shikarpur and proceeded on to Adisar; beyond this he had to cross that part of the Runn which here divides Cutch from the Pálanpur State and this he was surprised to find under water to a depth varying from 1 to 2 feet: to overcome this difficulty he established suitable stations right across the Runn on pegs driven through the water into the ground; and planting his stares and instruments on these pegs lie contrived to get across satisfactorily: he reports the bottom of the Runn here to be concave in the section he marle, with a depression of some 2 feet at the centre. Mr. Rendell continued the north-easterly course in which he started to Gokatar, and from thence turning to the south-east he proceeded onwards to Patri, and eventually closed on the bench-mark at Viramgám established by Captain Baird.
(27.) Captain Baird levelled over 249 miles, and Mr. Rendell over 171 miles, making in all the excellent out-turn of 4.20 miles, executed in each case by two observeis and subject to the rigorous conditions of exactness which in lines of such considerable length are essential: 24 survey stations and 106 paka points were connected; besides which 36 bench-marks, embedded in the usual manner, were established. The main line thus executed by Captain Baird and the loop line levelled by Mr. Rendell, when combined with the line between their starting points (Jorya to Shikarpur) established a complete circuit: the difference in height, on comparison at the point common to the two parties at Viramgam, amounted to 0.636 feet, and even assuming that the whole of this error is due to the loop line, which was executed with comparatively inferior instruments, the percentage of error per mile amounts to 004 feet.
(28.) Unfortunately Captain Baird in course of his duties suffered from fever, so that he obtained 3 months' leave and proceeded to England for a change. Meanwhile however, it had become evident, that the large mass of his tidal observations could not be reduced in this country except at the considerable cost of restricting Captain Baird to the duty of computations solely: as a more expeditious and far more economical measure, Coloucl Walker recommended that advantage should be taken of Captain Baird's presence in England, where, in concert with Mr. Roberts of the Nautical Almanac Office, he should be authorized to reduce his observations. This suggestion having met with approval, Captain Baird and Mr. Roberts are now engaged on the work in England.
(29.) Captain Baird made over charge of his party on 12 th June to Major C. T. Haig, R.E., who conducted the computations during the recess in addition to his other duties.

## NOs. VII and VIII.-GEODETIC.

## ELECTRO-TELEGRAPHIC DETERMINATIONS OF DIFFERENCE OF LONGITUDE.

(30.) These operations it will be remembered were begun in 1872-73 and were then conducted by Captain J. Herschel, R.E., F.R.S., assisted by Captain W. M. Campbell, R.E., who finished the two ares Madras-Bangalore and BangaloreMangalore. Complete discussions by these officers of the instruments employed, the procedure followed and the work executed will be found in the appendix to the report for the year above named, the introduction to these papers by Colonel J. T. Walker, R.E., F.R.S., being placed as usual in the body of the report in
question. In course of the preceding operations it was scen that No. 1 of the pair of transit instruments and B of the two similar chronographs exhibited such serious faults in performance that it became a matter of much importance to detect and eliminate their causes. Meanwhile however Captains Herschel and Campbell proceeded successively on furlough, and on the return of the latter he was deputed to aid Coloncl J. F. Tennant, R.E., F.R.S., in observing the Transit of Venus. Thus the longitude observations fell into abeyance for a time, nor were Captain Campbell's services again available for the purpose until the end of April 1875, when it was too late to begin field operations. He therefore turned his attention to the instrumental defcets above mentioned, and to such excellent purpose, that he appreciably cured the faults in the transit instrument, and devised remedies for the chronograph which he entrusted to Mr. Doderet, the Mathematical Instrument Maker to Government at Madras, to execute : the details of these matters are given by Captain Camphell in the Appendix to the report for 1874-75.
(31.) During the year under review, Captain Campbell, with the aid of Captain W. J. Heaviside, R.E., undertook the more comprehensive programme of operations hereafter mentioned. He began by applying to the defeclive chronograph the improvements which had been devised by himself and excouted by Mr. Doderet during the recess and found these entirely successful. On this he took the field and proceeded to Hyderabad where he was joined by Captain Heaviside.
(32.) The proposed programme for the season's operations involved the

## Pbrsofnel.

Captain W. M. Campbell, R.E, Offg. Depuity Superintendent 2nd Grado

Mr. J. Hond, Assiatant Survegor 1pt Grade.

Captrin W. J. Henriaicle, R.E., Deputy Suprintendent 3rd Grade.

Mr. H. E. F. Koelon, Surveyor 3rd Grade.
measurements of the following ares

1. Hyderabad-Bombay
2. Bellary-Bombay
3. Bellary-Hyderabad
4. Madras-Hyderabad
5. Madras-Bellary
6. Bangalore-Bellary
7. Bellary-Mangalore.

Of these, 1 to 6 were successfully completed : the are last named could not be undertaken from want of time. Arrived at Hyderabad, Captain Camplell selected a suitable station at Bolarmo in preference to locating limself near the neighbouring telegraph stations at Hyderabad and Secunderabad. Herc in due course Captain Heaviside under Captain Camplell's instructions acquired the instrumental and other special knowledge necessary in these operations; after which the observers proceeded to determine values of the personal equation between them, using both transit-instruments for this purpose. Sulsequently Captain Heaviside dismantled and removed his instruments to Bombay, Captain Campbell standing fast at Bolarum, and thus the are Bolarum-Bombay was begun and completed. Next Captain Camphell moved to Bellary, and in conjunction with Captain Heaviside at Bombay measured the arc Bellary-Bombay. After this Captain Campbell proceeded to Bombay, where values of personal equation were determined with Captain Heaviside's transit. Then, the latter officer moving to Bolarum and the former returning to his camp at Bellary, they measured the are between these stations, thus completing a circuit. The next arc, Madras-Bolarum, was measured with Captain Heaviside at the latter and Captain Campbell at the former station. Subsequently, while his instruments were being shifted to Bellary, Captain Heaviside visited Captain Campbell at Madras, where values of personal equation were determined, this time with Captain Campbell's telescope: after this Captain Heaviside proceeded to Bellary and the observers finished the are Madras-Bellary, thus completing the second circuit of the season. Finally, while his collcague stood fast at Bellary, Captain Campbell moved to Bangalore and the are between them was duly measured. The season's operations were closed at Bangalore by determinations of values of personal equations with both the transits.
(33.) Besides the improvements already mentioned, Captain Campbell's experience and skill have enabled him to make other amendments; these will be found described in his narrative, given in the appendix to this report, to which I invite attention. The nicety of appreciation, so essential in these delicate opera-

tions, is apparent in his instrumental arrangements, while his own and Captain Heaviside's skill as observers, combined with their foresight, unremitting care and assiduity, have enabled them to complete an amount of work which is excellent in quality and ample in quantity. The extent of their success is also partly due to the accommodations they enjoyed in respect to the telegraph wires, through the courtesy of Colonel D. G. Robinson, R.E., Director General of Telegraphs, and his officers, whereby, during the measurements of all the arcs, save the first, the observers obtained the use of the line wire uninterruptedly during their programme for each night. In addition, Captain Camplell received every assistance and kindness from Mr. Pogson, Government Astronomer at Madras, while Captain Heaviside enjoyed similar hearty co-operation at the hands of Mr. C. Chambers, F.R.S., Superintendent of the Obscrvatory at Bombay.
(34.) Captain Campbell having completed the necessary calculations during the past recess, has forwarded the following abstract of results, just in time to enable me to include it in this report.

ABSTRACT OF RESULTS.

Circuit I, 1875-76.

| $\Delta L$ Bolarum-Bombay, ,, Bellary-Bombay, |  | $\ldots$ | $\ldots$ | ... | $\begin{aligned} & 22^{m} \\ & 16 \end{aligned}$ | $\begin{aligned} & 48 \cdot \cdot 866 \pm \cdot 0084 \\ & 26 \cdot 941 \pm \cdot 0130 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " | $\left\{\begin{array}{l} \text { deduced, } \\ \text { observed, } \end{array}\right.$ | $\ldots$ | $\ldots$ | $\ldots$ | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 21 \cdot 925 \pm \cdot 0155 \\ & 21 \cdot 875 \pm \cdot 0126 \end{aligned}$ |
|  | Diffe | nce, | ... | ... |  |  |

Circuit II, 1875-76.

| $\Delta$ L Madras-Bolarum, | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 6 | $54 \cdot 701 \pm \cdot 0123$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " Madras-Bellary, | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 13 | $16 \cdot 591 \pm \cdot 0124$ |

## Circuits I and II combined, 1875-76.

| $\Delta L$ | Bolarum. Bombay, Madras-Bolarum, | $\ldots$ | $\ldots$ | $\ldots$ |  | 22 6 |  | $\begin{array}{r} \cdot 866 \pm \\ \cdot 701 \pm \end{array}$ | $\begin{array}{r} .0084 \\ \cdot 0123 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " (1) | Madras-Bombay, | ... | ... | $\ldots$ | ... | 29 |  | '567 $\pm$ | -0149 |
| " | Bellary-Bombay, |  | $\ldots$ | $\ldots$ | $\ldots$ | 16 | 26. | '941 $\pm$ | .0130 |
| " | Madras-Bellary, | $\ldots$ | $\ldots$ | $\cdots$ | ... | 13 |  | '591 $\pm$ | - 0124 |
| " (2) | Madras-Bombay, | ... | $\ldots$ | ... | ... | 29 |  | '532 $\pm$ | -0, 80 |
|  |  | Difference between (1) \& (2), Mean of (1) \& (2), |  |  |  |  |  | . $035 \pm$ | -0234 |
|  |  |  |  |  |  | 29 |  | '550 $\pm$ | '0117 |

Circuit III, 1872-73 and 1875-76.



#### Abstract

A discuasion of the error arising from the method of deducing the collimation and level corrections of the faulty telescope (No. 2) in Season 1872-73 (which will be found with the results of that season) satisfactorily accounts by nctual figures for $0^{s} \cdot 10$ of the large discrepancy ( $0^{3 \cdot 166 \text { ) found }}$ above, while it indicates the probability of a considerably larger quantity. W. M. C.


It will be seen that circuits I and II re-enter very satisfactorily, and that in the alternative circuit formed by combining these two, a partial cancelment of their individual errors occurs. In circuit III, the arc Madras-Bangalore was measured in 1873 before the defects of transit No. 2 had been eliminated; bence the unsatisfactory re-entering discrepaney of $0 \cdot 166$; this, as Captain Campbell shows, reduces by calculation to $0 \% 066$, with an indicated probability that a further correction is due.

## NO. IX.-TOPOGRAPEICAL.

## THE SURVEYS IN THE DEHRA DUN DIS'TRICT AND in the slwalik hills.

(35.) These surveys, as heretofore, have been carried on conjointly by

## Personinel.

Captain F. R. Thnillier, R.E., Offg. Deputy Superintendent lat Oraile.
E. C. Hyull, Esquire, Offg. Assistant Guperintendent 2nd Grade.

Mr. C. J. Nenville, Surf. 2nd Grade. , W. Todd, " 2nd "
" H. Todd, Asst." 18t "
, T. Kinuey, , " lat "
" E. F. Litchfeld, "'Asst. Surveyor 2nd Grade.

Mr. I. S. Pococt, Aest. Surveyor 3rd Grade.

Mr. R. F. Wartiolt, Aest. Survegor 4th Gmide.
7 Native Survegors.

Captain H. R. Thuillier, R.E., in charge of the Kumaun and Garhwal Party, and by Captain F. Bailey, R.E., Superintendent of Forest Surveys. The latter, working for the requirements of forestry, undertook the internal details of those portions of the country included within the boundaries of the Government forests, leaving the remainder of the ground to be mapped by Captain Thuillier: thus the operations of these officers when combined produce a complete map of the Delira Dún district, including Jaunsár Bawar, and of the southern portions of the Siwalik Hills so far as the Government forests extend. The allotment of country to each officer will be readily seen by a glance at the index map, in which the portions assigned to Captain Bailey are not colored. Captain Thuillier continued to direct the operations intrusted to him until the end of February, when in compliance with orders he made over charge of his party to Mr. E. C. Ryall and proceeded to join the Superintendent: thus the field duties were conducted successively by Captain Thuillier and Mr. Ryall, and accordingly their separate narrative reports on the subject are given in the Appendix.
(36.) At the close of season $1874-75$, the operations remaining in the Dehra ralley were restricted to the Eastern Dún, and of this tract the whole had been triangulated while about one half had been traversed. In Jaunsár Báwar the entire country had been triangulated and was so far prepared for plane tabling, subject to such further additions as the subsequent operations might require. Commencing at this stage, Captain Thuillier devided his establishment into two
portions; one of these he placed under Mr. Ryall and sent into Jaunsár Báwar to survey that subdivision, while he retained the other under his immediate directions to operate on the eastern portion of the Dehra Dún. As regards the parts of Kumaun and Garh wál which could not be finished in 1874-75, it may le here stated, that these tracts were not visited: they comprise only some 1,200 square miles, but lying as they do on the north-eastern confines of the district and at considerable altitudes and thus being difficult of access, it was deemed undesirable to incur the necessary heavy outlay which the work would involve, especially in view of finishing the survey in the Dehra Dún district.
(37.) Taking the field about 20th October Captain I'Ibuillier commenced his operations in the Eastern Dún: like the rest of the valley, the country is cut up ly numerous watercourses; elsewhere it is generally covered by dense forests, so that the area under cultivation is very small: in addition, the spurs running down from the Limalayas here terminate in abrupt precipices, each succeeded by a forest-covered platean which is so fat that the water lodges thereon and presents a hige swamp: these swamps range from 1 to $2 \frac{1}{2}$ thousand fect abore sea level, while the hills north of them rise to over 7,000 feet. Under such circumstances the work was not only difficult but exceedingly tedious and trying to health. Fifty-four miles of check traverses were run to test the work, and Captain Tlucillier examined the hill skotching in person, both in the Debra Dún and also in the Amláwa valley of Jaunsár Bâwar.
(38.) Mr. Ryall commenced field work in Jaunsír Bámar on 22nd October: He rightly adopted various watersheds as boundaries for the different plane-tables in place of the co-ordinates which are more convenient on table land, and he established additional trigonometrical points to facilitate the topographical work in the valleys and on the remote patches of country about Sansog and Banpur. The country under survey may be regarded gencrally as made up of thre belts or strips running east and west. The southern belt or up to the parallel of $30^{\circ}$ 44' lics chiefly in Jaunsír ; it rises to an average height of some 6,000 feet above sea level, and the Government forests thereon are restricted only to a few detached patches. The middle belt is about 5 miles in width and is covered with rich forests all inchoded in the Government reserves; it lies chicfly in Kándah and comprises several lofty hills as Deoban and Kalamu, rising to an average height above sea level of some $\mathbf{9 , 3 0 0}$ feet. 'I'he northern and remaining belt monch resembles the southern strip, both in average height and gencral features, excepting that the former is much more plentifully covered by Government forests; it lies chicfly in Báwar. The necessity for fixing numbrous points on the forest houndaries, in posed on the surveyors considerably greater labour than was anticipated, and this was enhaned by similar requirements in connection with the khats, which are intemal sul)-divisions consisting of 5 to 15 small villages or land-holdings. Along the valleys of the Jumna, the Tons, and the Pabar rivers, the mountains are extremely precipitons.
(39.) In the Dehra Dún, hesides the remaining preliminary traverses, 12 \& square miles were surveyed on the scale of 4 inches to a mile; after which, in order to utilize the services of a few native surveyors who were not sufficiently trained for work on higher ground, the survey of Dehra, including 8 square miles, was completed on the scale of 12 inches to the mile. Besides the foregoing, 38 heights were determined trigouometrically and many others by means of the aneroid barometer. In Jaunsír Báwar, 52 points including 9 heights were fixed trigonometrically, and 430 square miles survered topographically on the scale of 2 inches to the mile : further, no less than 1,350 boundary pillars were laid down, and both the cart road and the bridle-road to Chakrita for a distance of 72 miles in all, lying within Jaunsír, were traversed: every endeavour was made to lay down the boundaries of the cantomment of Chakrata, and the required limits were defined so far as the necessary information on the sulject could be obtained. With regard to office work, 6 maps have been finally drawn and completed for publication. The work herein reported on completes the survey of the Dehra Dún distriet, including Jaunsír Bárirar, so far as the portions undertaken by this department are concerned; and, as will be secu bereafter, of the
parts assigned to Captain Bailey only 20 square miles in the Dehra valley remain to finish the entire work. As regards the operations under Captain Thuillirr and Mr. Ryall now under review, I have carefully inspected the original plane table shects and can vouch for the general care and accuracy with which they are delincated: they represent an amount of toil and perseverance which can be best appreciated only in presence of the difficult, ground operated on, and in view of these conditions, the out-turn of work achieved is satisfactory both as respects magnitude and merit.
(40.) In submitting to Government Captain Bailey's report on his progress during 1875-76, the Officiating Superintendent, Captain Thuilkier, makes the following remarks.-"The portions of country surveyed presented very intri"cate and difficult l'eatures throughout, the hills being mostly covered with forest "and jungle, which render a faithful survey more tedious and difficult." Again, " the topography is good, and considering the intricate and rugged nature of the "ground operated on, the out-turn is satisfactory." Further, "Captain Bailey "reports very favorably of the progress made by his Native surveyors and this is "proved by the average monthly out-turn of topographical area by a party con"sisting of 1 European and 6 Natives having increased from 74 square miles "during field scason of $1874-75$ to 123 square miles during the season under "review." Also, "the forest tracts in Jaunsár have been entirely completed, "and with the exception of a small portion of about 20 square miles those in the "Delira Dún also." Lastly he adds, "having been working conjointly with "Captain Bailey in the gencral surveys of the Dehra Dún and Jaunsár during the " past three years, I am glad to have this opportunity of testifying to the able and "zealous manner in which he conducts the operations under his charge."
(41.) The successful completion of this survey, undertaken three years ago, reflects much credit on Captain Thuillier, Captain Bailey, Mr. Ryall and the assistants who aided them: by its means we obtain accurate maps with well delineated terrestrial features of a tract of country which is rising daily in importance and value, and which is already rich in extensive tea and other plantations. Moreover the Dehra valley presents considerable areas of land, well watered, in a favorable climate, and otherwise suited for settlements of various kinds; and besides, the country abounds in extensive Government forests the products of which are rapidly increasing in value; but in the absence of the excellent maps now secured, and amid the dense underwood and forest which alternate with open glades and tortuous ravines, it has hitherto been impossille to define a site, in connection with grants of land or for other purposes, even if the site in question could be discovered. These drawbacks now stand removed : the maps are already in local demand and, it may be predicted, will continue to rise in importance.

## NO. X.-TOPOGRAPHICAL.

## the survey of Kattywar.

(42.) The topographical survey of this province was conducted as before

## Pergomiel.

Major A. Pullon, S C., Ofg. Depuly Superintenrlent 3 rd Grude.
J. MeGill, Lisq., Olfg. Assistant Guprit. 1st Grade.
Dir. J. Pryton, Surveyor lat Grade. " N. C. Gwymme, " 4th " W. A. Fièlding, "A set. Survejor 2nd"Grade.
Mr. W. Oldhara, Aset. Surveyor 3rd
Gracle.
Mr. G. T. Hall, Asat. Survejor Mrd Grude.
Mr. II. Corkery, Abst. Surregor 4th Grade.

Fiarji Ragonalh Gndholi and 9 other Natire Survejore aud Appreblices.
by Major A. Pullan during the year under review, exccpting the period of two months beginning 8th April when he availed himself of privilege leave and Mr. J. McGill officiated in his place: otherwise, the establishment was maintained at its former strength, for while on the one hand Mr. F. Bell obtained furlough for twelve months, on the other, Mr. J. Peyton was appointed instend to do duty with the party. The narrative of the field operations is without event; and notwithstanding that fever and cholera prevailed in Kattywar to some extent, the estallishment was fortunate, under judicious management, in suffering only slightly from these causes.
(13.) The country visited lies chiefly in the south-west portion of the province, where two of the southern shects touch the sea coast; the ground topographically surveyed on the scale of 2 inches to the mile is included in sheets $36,37,38$, each sheet embracing $\dot{1}^{\circ}$ of longitude and $4^{\circ}$ of latitude; and trigonometrical operations were conducted in advance so as to complete sheets 46,47 , and 48 and portions of 40 and 50 : besides the foregoing, sheet $10_{\mathrm{a}}$, which borders on the liunn of Cutch, was also completed topographically. Thus, the operations under review included the principal towns of Gondal, Jetpur, Junágarh and Jhinjhuwára, of which, Junagarh is reckoned third in importance throughout the province of Kattywar: the country was fertile and well populated, fairly wooded with several kinds of trees, and watered by the rivers Ujat, Uben and Bhádar; the last of these being the largest stream in the province. Nor were prominent terrestrial features wanting, for Girnar mountain lies immediately east of the town of Junagarl, so that the latter stands at the foot of one of the western spurs. This remarkalle granite mountain rises to a height of 3,666 feet above mean sea level and is terminated by three sharply defined peaks which are dedicated to deities Hindoo and Mahomedan. The mountain and surrounding country are described by Major Pullan in an interesting account, given in Appendix $\mathbf{X}$.
(44.) Fully availing himself of the favorable conditions prevailing, Major Pullan and his party succeeded in completing an excellent out-turn of work, which, it will be seen below, contrasts very favorably with the amount for the preceding year and is at least equal to the large out-turn for 1873-74. The area topographically sırveyed in 1875-76 includes parts of Pránts Hállár, Kattywar, Sorath and Jhalawad :-

|  |  | 1873.74. | 1871.75. | 1875.76. |  |  |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- |
| Topographical | $\ldots$ | 2201 | 1749 | 2253 | square miles. |  |
| Trigonometrical | $\ldots$ | 2174 | 2200 | 1850 | ," | " |
| Traverse | $\ldots$ | 1235 | 1117 | 1600 | linear | " |

Numerical contrasts of such work, as is well known, are in themselves quite insufficient to point to conclusions, failing as they do to impart any idea of the all important local conditions which govern progress in survey operations; but after due consideration of all the existing circunstances and inspection of the original fair drawings, I am of opinion that Major Pullan and his party are due much credit for the success attending their labors during the scason 1875-76. In presence of the annual progress hitherto made, it will be seen from the Index chart given in the Appendix, that the survey of Kattywar now begins to approach completion, so that the expectation of finishing the province "within the next five years," expressed by Colonel Walker in his report to Government for 1873-74, is likely to be fully realized.
(45.) As respects fair drawing for publication by photozincography, sheets $31,42,43$ and 44 have been completed, as usual, on the scale of 2 inches to the mile. Further, suitalle delincations have been prepared for the Surveyor General's Office, in order to expedite the engraving and publication of the Atlas sheets for India.

## NO. XI.-TOPOGRAPHICAL.

## THE SURVEY OF GUZERAT.

(46.) The utilization of the previously executed Revenue Survey maps

## Personnel.

Major C. T. Haig, R.E., Org. Depy. Superintendent 1st Grado.
lientonnit J. E. Gibbs, R.E., Ofg.
Assist. Superintendent 2nd Grade.
Dr. A. J'Souzn, Surr. lat Grade.
A. D. L. Christie, Surseyor sth Grade.

Mr. C. H. Med'Fec, Surv. 4th Grade.
, J. Hickie, Aest. Surv. 2nd "
" G. 1). Cusson, " \#\# "
"S. F. Norman, " 4th "
C. Normnn, " "

M'̈rgars. VI. G. Ferms, "Gopnl 'Vialun, and 14 other Nativo Surregors and Apprentices.

Refente Sthiey.
H. D. E. Forbeg, Esq., Asst. Supdt. 3 Natire Surrejore.
of certain villages in Guzerat, ly combining therm with the Topographical Survey of the provinee now in progress, has presented subjects for considerable deliberation and discussion extending over the years 1872 to 1876 . The arguments advanced by the Superintendent, Colonel J. T. Walker, R.E., in support of the views entertained by himself and shared by this department, the procedure of survey adopted and the modifications introduced from time to time as experience showed to be desirable, and the consequent cvents developed, have all been given year by year in the Administrative reports preceding the one now in hand. The decision which has finally been arrived at, is set forth in the following extracts from letter

No. 653 dated 5th August 1876 from the Government of India, in reply to Colonel Walker's letter No. $\frac{32}{328}$ dated 29th March 1876.
2. In reply I am to state that the Governor General in Council agrees to the proposals contained in paragraphs $24-26$ in respect to the future conduct of the work in Guzerat ciz.:
$1 s t$ that the plan of giving every detail which the 2 -inch scale sanctioned is capable of showing, with a view to the publication of the maps on the same scale, should be adopted for British Districts in Guzerat of which village maps have already been made,
2nd that the plau of giving no more details than can be clenrly shown on half that scale, of drawing them boldly, and of exaggerating all the names of towns and villages \&c., so as to permit of the maps being readily reduced by photograply to the l-inch scale, and published on that instead of the 2 -iuch scale should be applied to all other parts of Guzerat,
3rd that two sets of maps of the British Districts should be pullisherl; one on the 2-inch scale, iucluding as much as may be required of the contignous Native States to square the 2 -inch maps off conveniently; the other ou the 1 -inch scale, to juxtapose with the reduced maps of the Native States,
$4 t h$ that village maps should be utilized in distinguishing between cultivated and barren or forest trarts, in defining village boundaries, and in giving all interior topographical details which stand the test of examination by the topographical surveyors,
5th that the stations of the triangulation and traversing should be placed as frequently a posssible at the junction point of three fields. and that the corresponding field numbers should be marked ou the maps. The field junction points on the external boundary lines and the internal divisions between cultivated and harren tracts should be taken from the village maps and inserted on the topographical maps, the numbers for every 2 nd or 3rd point been given on the map to facilitate identification.
(47.) These ordera, restricting the scale of survey to 2 inches per mile, werc reccived too late to be carried out in the field operations under notice; but the resulting maps for publication, and all others herealter prepared, will be drawn on the prescribed reduced scale of 2 inches to the mile, as directed.
(48.) The operations of the Guzerat Survey were conducted as heretofore by Major C. T. Haig, R.E., during the twelve months und $(r$ review, excepting the periol of about threc months from 13th February 1876, when he availed himself of privilege leave and Lieutenant J. Gibbs, R.E., officiated in charge of the party. Final work was carricd on over two separate areas, which may be distinguished as the northern and southern portions of the season's out-turn; and
between these plots, and more particularly north of the latter, a considerable area was prepared by traversing and triangulation for topography in the year following.
(49.) The northern portion topographically surveyed comprises shects 78 and 79, besides a small area in sheet $10_{\mathrm{a}}$, and includes all the Khalsa lands which were visited this year and completed, before Government orders could be made effective, on the usual 4 -inch scale. The country was singularly devoid of all through drainage, nor could a single watercourse be found, of sufficient volume to reach the Runn of Cutch on the west or the Sábarmati river on the east: tanks abounded and appeared to offer sufficient receptacles for the total rainfall; besides, there was a large lake called Wanod-na-Saran which presented a surface of some $6 \frac{1}{2}$ miles of water when quite full. The principal towns were Viramgám, Mándal, Detroj, Kari, Bechoraji Mátha and Katosan. The Bombay Baroda and Central India Railway traverses the tract in an east and west direction. The country here surveyed includes a large part of Viramgám taluka and a small part of the Sánand taluka of the Alumedabad collectorate, a portion of Kari Mahal, six villages of Pátan Mahal of the Gaekwar's territory, and a small part of Mahi Kánta.
(50.) The southern portion topographically surveyed comprises sheet 31 and the north-west quarter of 32, and includes the city of Broach, besides the towns of Ankleswar, Sinnar, Tankána, Sukaltirth, Diva, Chandod and Rund Bhúlod, and in addition 24 other towns and villages with populations ranging between one and two thousand souls. The river Nerbudda waters the country, across which the Bombay Baroda and Central India Hailway runs for a length of some $2 \ddot{0}$ miles. The tract here surveyed includes parts of Broach, Ámod and Ankleswar talukas of the Broach collectorate; also parts of Sinnar, Mahal (Gaekwar's territory), Rájpipla and Sánkhera Mewas under the Rewákánta Political agency.
(51.) The area traversed and triangulated and thus prepared for the topographical operations of the following year need not be further indicated at present, than by the statement, that it comprises sheets 28,29 and 30 and lies between the parallels $22^{\circ} 0^{\prime}$ and $22^{\circ} 45^{\prime}$ and the meridians $73^{\circ} 0^{\prime}$ and $73^{\circ} 30^{\prime}$.
(52.) In all, the area surveyed comprises; of final topography, 924 square miles on the 4 -inch and $9 \pm 8$ square miles on the 2 -inch scale: and of ground traversed and triangulated in advance, 1650 square miles. This represents an excellent out-turn of worls, for which Major Haig and his assistants deserve much credit.
(53.) In respect to mapping, the work appears to have been spread unavnidably over a considerable number of sheets, of which several could not be completed though they were well advanced. Seven sections in hand, of degree sheet II, are of this class; but the other half of this sheet was begun and finished, as also was a half section of sheet 80 : the printing of names in about 14 sections was completed. Lastly, the compilation of a map of the city of Broach was undertaken, a work which required considerable care and skill, involving as it did transfers from no less than 71 other maps by the Revenue Survey.
(54.) Major Haig describes a methor introduced by himself of mounting plane table sections, by which the drawing is readily removed when required and the surface of the paper is not liable to injury.

## NO. XII.-THE COMPUTING OFFICE.

## CALCULATING AND PRINTING BRANCHES.

(55.) The Computing Office consists in the main of a staff of Native Computers, with whom are associated two selected Surveyors from the Junior branch of the department;

Major J. Morachel, R.E., F.R.S., Dy. Supdt. 2nd Grade (in cliarge from 2 lst Mareh 1876).
W. H. Cole, Esq. M.a., Offg. Dg. Bupdt. $\mathbf{3}$-d Grade (in charge to 21 at Murch 1876).

## Computing Branch.

Mr. O. Wood, Survejor Mrd Grade, II. W. Poychers, Surreyor sth Grade.

Haboo Gungn Pershad, Computer.
, Cully Molun, Ghose
iv Kally Coomar Ohatterjoe, and 11 olleer Computers.

Printing Branch.
Mr. M. J. O'Connor, Printer. 16 Composilors and 3 Pressmen. these form the Calculating branch, whose varied and comprehensive duties will be found reported on at length in Appendix XII. It is therefore sufficient to mention in this phace, generally, that the computing office is required to examine, reduce finally and publish the results of this Survey, as well as to meet the current professional demands which emanate day ly day from various sources. 'lhese duties obviously involve other professional skill in addition to that of computers; accordingly three smoll anxiliary branch offices for Printing, Drawing and Photozincographing, work in concert with the Calculating branch, and the four branches form what, thus constituted, is called the Computing Office. 'Ihis office has for years past been supervised by two of the survey officers, directed by the Superintendent: the senior of these two (myself) being absent on furlougl, the duty of supervision devolved on the remaining officer Mr. W. H. Cole M.A. The latter in turn proceeded on furlough, 21st March 1876, and the Superintendent, Colonel J. T. Walker R.E., also shortly after availed himself of leave to England : under these circumstances, the principal offices, i.e., the Calculating and Printing branches, were placed under the directions of Major J. Herschel R.E., while the Drawing and Photozincographing branches were worked under orders from Captain H. R. Thuillier R.E., who also officiated for the Superintendent. The subdivisions thins temporarily formed, are reported on separately in Appendices XII and XIII. The review here in hand has now reference exclusively to the former Appendix on the Calculating and Printing branches.
(56.) Major Ferschel's report has reference to the thirteen months which ended on 31st October 1876: it primarily exhibits a "Tabular Statement of cost in Rupees of different kinds of Work done" and subsequently adopts for review the classification introduced into this table. The classes thus noticed are treated with so much originality and comprehensiveness as to impart additional interest to his remarks, which will be found at length in Appendix XII. It is therefore suffeient to restrict the review in hand to a general summary of the progress made, and to such bricf notices, of a few leading points, as may be entered on without needless reiteration of what is given in detail hereafter. As regards the cost-table above mentioned, it deals with the classification adopted in an effective manner, and in stating the absolute expenditure on each subject, it indicates the directions into which the available working power happens to have been diverted, relatively.
(57.) Roverting for a moment to the Superintendent's administrative report for $187.4-75$, it was there mentioned that the triangulation of the Sectional Figure known as the South-East Quadrilateral (or S. E. Q.)* had been made consistent by the method of minimum squares, under Mr. Cole's supervision, "in a most satisfactory manner." Subsequently, the remaining computations of Principal work were finished and the printing of these results proceeded with, so that the pages of Volumes VI and VII are approaching completion. And as regards the 6 Synoptical Volumes, i.e., one for cach series, of the S. E. Q., considerable

[^4]progress has been made, with the records of the Secondary triangulation involved, in correcting, revising and where necessary renewing them, and a sensible impression has been effected on the printing of the results: these volumes it will be remembered, give the facts of the Principal volumes, entitled "Account of the operations \&c.," in a contlensed form ; besides the results of Secondary operations; so as to provide for various local wants, including those of the Geographer and the Surveyor. It may also be suitably mentioned here that Principal Volumes III and IV of the North-West Quadrilateral (or N. W. Q.) Lave been received back from the Book-binder's hands, and that Synoptical Volume VI, which treats of the triangulation of the Jogi-'L'ila and the Sutlej Series in the Punjab, has been bound and published. This latter issue completes the Synoptical publications for the N. W. Q., excepting the volume comprising the chain of triangles which stretches from Dehra Dún to Attock: the series last named, known as the North-West Himalaya Series, includes a great number of Secondary series which are of considerable extent and establish numerous mountain points; thus the work involved, in computing, compiling and printing, as also in drawing and reproducing the several charts required, has been unusually arduous; and hence the time required for publication of this volume is necessarily far greater than for other volumes of its class. Lastly with regard to the volume on the Pendulum operations, a good deal of work was done during the early portion of the year in preparing its pages for the press.
(58.) Anong the principal suljects which have occupied the office during the year under review, is that presented by the required reduction of the North East Quadrilateral (or N. E. Q.) ; this section as originally indicated was hounded as follows: on the south by the castern half of the line from Calcutta to Karichi; on the west, by the Indian middle meridian of $78^{\circ}$; on the north, by the British frontier generally; and on the east, by the meridian of Calcutta up northwards to the foot of the Himalayast : subsequently the section was extended to the east, so as to include four series, viz., the East Calcutta, the Bralımaputra, the Eastern Frontier and the Assan ; further, the Budhon Series was excluded in the simultaneous reduction, for in fact the circuit it included was disentangled from the others. The modified section thus undertaken for reduction, by the method of minimum squares, presented several features which differed from those occurring in the Sections N. W. Q. and S. E. Q. already made consistent. In the N. E. Q., the limiting series to the west and nearly the whole of the southern chain had already been determined and fixed by the previous reductions; the circuits were shorter and the triangulation, excepting the eastern extension above mentioned, comparatively inferior in quality; on the other hand, the section in hand presented no less than 49 conditions to be satisfied simultaueously.
(59.) Major Herschel's "Gridiron Function 'l'able", exhibits in a neat and convenient form, the leading facts which convey an idea of the labor and to some extent of the amount of entanglement prevailing in the N. W. Q., the S. E. Q. and the N.E. Q. The labor involved in what is generally the most tedious part of the reduction, is well expressed by "Number of Products forming the same" (i.e. Normal Equation Coefficients); the entanglement and other sources of intricacy are not susceptible of accurate numerical expression in a combined form, but a very uscful indication in this direction is represented by "Average terms per normal equation"; in all, the table is a valuable contribution to the computer. Quoting Major Herschel's numbers for the three Sectional Figures, in the order N. W. Q., S.E. Q. and N. E. Q., it appears ; that the "Number of Circuit triangles" are as 519:277:573; "Number of Equations of Condition", as 23:15:49; "Number of Normal Equation Coefficients", as 329:165:551; "Number of Products forming the same", as $40 \cdot 0: 10 \cdot 7: 51 \cdot 0$; and the "Average terms per Normal Equation", as 14: 11: 11 : to these may be added, average number of triangles per circuit, as 162: 123:77. Major Herschel has made good progress in the
reduction of the N. E. Q. and the results already obtained promise a very successful conclusion to his labors.
(60.) The measures necessary for the protection of our Principal stations have been continued as heretofore, so that the work has now been nearly brought up to date. The transfer of these stations to the care of District Officers was begun in 1865, when, having obtained sanction for the necessary funds, Colonel Walker entered on the difficult and tedious duty in question. In brief, the work involves a certain amount of correspondence with at least one official in every district all over India where a station happens to be fixed: approximately there were 350 districts to be dealt with, and 3,000 stations to be parceled out amongst the officers for care and protection of the survey marks imbedded within the structures. These marks present known points on the earth's surface, their latitudes, longitudes and heights being determined, so that in fact, the points stand endowed with properties of considerable value, which however can benefit ourselves or posterity, olviously, only so long as the marks are preserved. Now although, from what has been stated, there are on an average only some 9 points in a district, yet the difficulties of identifying them, necessarily by means of correspondence, are not a few : the stations are fixed from 10 to 60 miles apart, very frequently in desolate or wild regions or on sites not easy of access; in some instances, considerable periods since construction had elapsed, so that local recollections of the events liad died out; in others, changes in fiscal boundaries and necessarily in officials added to the difficulties of identification. Thus, descriptive district lists of stations frequently involve tedious correspondence before all the structures can be found by district officers; when this has once been effected, the district is included amongst those designated as "settled". Altogether, 313 districts have been settled, including 2,725 principal stations, leaving some 37 districts and 275 stations to be disposed of. In the work thus completed by the Superintendent, valuable aid has been rendered by Mr. C. Wood who continues to maintain his reputation as an excellent assistant.
(61.) The small auxiliary printing office, which forms part of the professional establishment essential for reduction and publication of the results of this department, has continued to work with efficiency and despatch.
(62.) The out-turn of work, performed successively under Mr. Cole's and Major Herschel's directions, presents ample and satisfactory evidence of successful supervision.

## NO. XIII-COMPUTING OFFICE.

## DRAWING and PHOTOZINCOGRAPHING BRANCHES.

(63.) The duty of supervising the Drawing and Photozincographing branches having devolved on Captain H. R. Thuillier, R. E., as explained in para. (55), his report on the work performed by these offices during the twelve months ended 30th September 1876, will be found in Appendix XIII.

## DRAWING BRANCH.

(64.) This small auxiliary office has continued to discharge its duties

## Perbonnel.

Mr. G. W. E. Alkineon, Surveyor 3rd Grade.

3 Iraftamen, 3 Asriatant Drafiamen, and 16 Apprentices aud Map Coloriata. with efficiency, notwithstanding the severe loss it sus. tained in the early part of 1875, when the two senior and most experienced draftsmen died. The duties in question are briefly as follows. All maps and charts drawn by the Field Establishments undergo examination and, when necessary, correotion under the Superintendent's direotion; after
which they are passed to be photozincographed: other maps and charts which the Field Parties may be unable to prepare are here drawn fair. Besides, various original compilations are undertaken; as, maps of the Northern countries ('Turkestan \&c.), Exploration routes, charts of spirit levels, \&c., \&c.: also, the original drawings to illustrate the volumes of the final results are made here, and the press proofs of these and of all maps, charts, \&c., are examined and passed : every print requiring coloring is tinted by the apprentices and colorists, and no less than 8502 copics were thus finished in the year under review. In addition, the office now possesses a very useful cartographical collection that needs suitable care in storing; and finally, various miscellaneous drawings are undertaken from time to time, to meet local requirements.
(65.) Of the original publications prepared during the twelve months, the maps of spirit levelled heiglits occupy the most prominent place in respect to number aud labor. These maps are deserving of some special notice. In the original programme, the spirit levelling operations of this Survey were naturally designed for the use of the department alone; it was however soon perceived by the Superintendent, Colonel J. 'I'. Walker, R.E., that the lines of levels might be made subservient to far wider purposes of utility. Now these main lines were necessarily executed with extreme, if not unprecedented, care, precaution and skill, for, owing to the enormons distances which exist between sea boards where alone completely satisfactory checks can be obtained, levelling with the rigour ordinarily sufficient would lead to results of insufficient value. Having established Bench-Marks along various routes, including remote inland tracts where risference to the mean sea level was hitherto unattainable, the resulting facts were printed from year to year for the information of all who were likely to benefit by them and in view of inviting junctions with the B. Ms. in question. Thus in course of time, the Public Works Department and Railway Officers connected their lines with the main lines of the Survey, and it became possible when such junctions had been effected to incorporate all the facts of levelling into a series of suitalle maps, provided only that Executive Officers of other departments would contribute tracings of their lines. This condition is however by no means an easy one always to secure; for notwithstanding that the labonr of compilation and publication is all undertaken here, and that unless thus preserved, valuable information may certainly be wasted after it has been made to serve its immediate end, yet, the difficulty in obtaining traces, was in a few instances overcome, only by sending a draftsinan from this office to do the needful at more or less distant stations. In very many instances however, co-operation was cordially rendered, or the undertaking must have been abandoned. The result is, that up to the present date 26 sheets of spirit levelled heights have been published, and the value of the compilations stands attested by the demand that exists for them.
(66.) I am glad to add that Mr. G. W. E. Atkinson, the chief draftsman, has continued to discharge his duties with zeal aud efficiency.

## PHOTO-ZINCOGRAPHING BRANCH.

(67.) This small establishment has continued to prove useful and efficient

## Pbebonnel.

Mr. C. G. Ollenbach, Zineographor. ". C. Dyann, Photoyrapher.
2 Apprentices, 1 Muplecoper and 3 Pressmen. as heretofore. By its means the maps and charts of the Survey are all published under competent direction and within a few months, or even weeks, of completion; the volumes of final results are illisstrated with the necessary diagrams, and a large number of professional forms, representing tabulation of mathematical formulæ, are produced with the accuracy so essential in these very necessary aids to calculation.
(68.) The out-turn of work for the twelve months under review may be briefly stated thus.-

| Trigonometrical Charts, |  |  | ... | 7 sheets published. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Topographical Maps of Kumaun and Garliwál, Guzerat, Kattywar and Delıra Dún Surveys, ... |  |  |  | 43 | , |
| Spirit Level Charts, | ... | ... | ... | 8 | " |
| Exploration Maps, | $\ldots$ | $\ldots$ | ... | 3 |  |
| Iudexes to Surveys, | $\ldots$ | ... | ... | 6 |  |
| Gazetteer Maps, ... |  | ... | . | 2 |  |
| Miscellaneous, |  |  |  | 2 |  |
| Reprints of Maps alread | publi |  | ... | 22 | ', |
| Total, |  |  |  | 93 |  |

besides numerous diagrams and forms.
(69.) Contrasting the number of copies printed daring the treive months, under the usual four heads, we cbtain the following out-turn of work beginning with 1870-71.

| Year | Maps | Clarts | Diagrams | Fornis |
| ---: | ---: | ---: | ---: | ---: |
| $1870-71$ | 6,465 | 839 | 13,205 | 10,482 |
| $71-72$ | 10,131 | 1,375 | 4,937 | 13,655 |
| $72-73$ | 6,910 | 2,206 | 12,055 | 12,549 |
| $73-74$ | 9,207 | 2,027 | 3,557 | 28,125 |
| $74-75$ | 7,010 | 3,015 | 1,795 | 24,219 |
| $75-76$ | 14,025 | 1,678 | 9,722 | 18,314 |

Or abstracting from the preceding table, there results as follows,

| sibisct. | 1870-71 | 1871.72 | 1872-73 | 1879.74 | 1874.75 | 1875-76 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maps, Charts and Diagrams, | 20,509 | 16,443 | 21,171 | 14,791 | 11,850 | 25,425 |
| Forins, ... | 10,482 | 13,655 | 12,549 | 28,125 | 24,219 | 18,314 |

Further; 7931 Maps and 2475 Charts were issued during the twelve months: the forms printed were all expended, and the diagrams were practically all absorbed in the volumes of final results. These facts speak for themselves and therefore need no commendation. It may be added, that new work keeps pouring in at least as fast as the old work is disposed of, so that a formidable list of subjects to be undertaken, now presents itself for despatch during the ensuing ycar.

## THE LIBRARY.

(70.) In compliance with the orders of Government, No. 3155 of 30th September 1876, that "The state of the Library is to be mentioned in the annual report," I proceed to supply the required information; but as this subject is now noticed for the first time in an Administrative report on this department, it appears desirable to introduce the following lurief preliminary statement.
(71.) The total number of printed volumes in the Field office of the Surveyor General and Superiutendent Great Trigonometrical Survey amounted in the year 1860 to about 100: this collection was maintained almost exclusively for purposes of computation, so that it consisted chiefly of Numerical Tables; as Logarithms or other auxiliaries to calculation ; besides some Mathematical, Astronomical and Geodesical works, and a Star Catalogue; together with occasional copies of travels and other kindred publications. In fact the requirements of the department, with respect to works of reference, were then of a very limited nature: our calculations were restricted to provisional completion of each chain or series of triangles regarded as a separate and detached work: these provisional results were transcribed in triplicate, of which, up to 1857, one copy was forwarded to the Honourable the Court of Directors, another was deposited at Calcutta and the third retained in the Field office. When however numerous chains of triangles had been provisionally completed, and the necessity became urgent, for combining these into consistent masses by the most suitable and rigorous processes due to the excellence of the triangulation, for printing our professional volumes and distributing them so as to secure eligible custodians for the results of this great Survey all over the world, and forillustrating our publications with suitable Maps, Charts and Diagrams, then the demand for works of reference, showing what had been done on other State Surveys, treating of mathematical analysis, or imparting general information, became equally urgent.
(72.) The present small Library, attached to the Computing Office, has thus been gradually formed, chiefly during the last 14 years, to meet this demand. The books are placed in a quadrangular framework* which admits of inspection both from within and without, so that the attacks by White-ants are detected at the outset, and damage from this source is unknown. At the present time, there are in all 2121 volumes in the quadrangular shelf, where they are arranged under

| A. Mathemntice, | F. Plilosophical, | L. | Manuale, |
| :---: | :---: | :---: | :---: |
| B. Aetronomy, | G. 'Travels, | N. | Photography, |
| C. Meteorology, | H. \{ Geogruplical, | P. | Pamphlets, |
| Magnetism, | H. Locul, | ${ }_{T} \mathrm{~T}$. | Tablea, |
| Grodery, | I. Historical, | U. | Almasincs, |
| E. $\left\{\begin{array}{l}\text { Grology, Botany, } \\ \text { Zoology, }\end{array}\right.$ | K. Encyclopedia, | $\underline{z}$ | Cntalogues, <br> Miscellaneous, | 19 heads or classes, so that a class consists of only some 110 volumes on the average. These books constitute what is known as the Standard Library; their titles are entered, class by class in a Catalogue, where the date of admission is also registered; and each volume is marked on arrival with the Survey Library stamp, in which the current year is included. Books may not be taken out of the Library room, without first signing a receipt, in which the condition of the volumes taken on loan is stated and a promise made to supply new copies in case of injury to those received. The Staudard Library contains only one copy of each work.

(73.) All duplicate copies are collected together by themselves and classified as above; they constitute what is known as the Duplicate Library and represent to a large extent works kept in stock, for supply to field establishments of this Survey and others, or for consultation and use in the Computing Office; as Numerical 'lables, Pamphlets on various subjects, \&c. \&e..
(7 h.) All the forcgoing are kept in one room, which is 18 feet square. The books are in good order and they are well looked after, but, as is obvious from the dimensions of the room, cularged accommodation is much needed.

[^5](75.) I cannot conclude this report without suitable allusion to Mr. H. R. Duban, the Personal Assistant to the Superintendent. Writing as I do of a period when I was absent on furlough, and in this instance of duties, which from their nature are rendered as frequently orally as otherwise, I am constrained to revert to the Superintendent's last report, where acknowledgment is made of Mr . Duhan's "valuable services," and to my personal knowledge of the estimation in which Captain Thuillier (my predecessor as Officiating Superintendent) held the aid rendered to him by the Personal Assistant. Apart from this general testimony and the discharge of his ordinary duties, Mr. Duhan has taken a leading share in preparing the ten years statement of expenses called for by the Secretary of State, a duty which he discharged to the satisfaction of the Surveyor General of India. During my term of office as Officiating Superintendent, I have been much indebted to Mr. Duhan for the prompt and efficient manner in which he afforded me every required assistance. Mr. L. H. Clarke continues to discharge his duties in the corresponding office, and as general store keeper, with care, punctuality and despatch.
(76.) An abstract of the out-turn of work by each of the Survey Parties, whose operations can be exhibited in a tabular form, is given on the following page.

J. B. N. HENNESSEY,

Deputy Superintendent, 1st Grade, late Officialing Superintendent. Defra Den
Dated 1st March 1877.

## Abstract of the out-turn of work executed by the Great Trigonometrical Survey Parties, during the Survey year 1875-76.



- Seo appoudix, $\quad+$ Ceglon Series. $\ddagger$ Besides 7 sect ions in hund and the priuting of 14 maps completod.


## APPENDIX.

EXTRLCTS FROII TIIE MIRRUTHE REPORTS<br>OF THE<br>\section*{executive officers in charge}<br>OF THE

## I. Extract from the Narrative Report-dated 3rd October 1876-of Major B. R. BRANFחL, Deputy Superintendent 2nd Grade, in charge of the Madras Party.

(2.) The main body of the party to the number of 70 , under the Tindal and Daffadar, left recess quarters at Bangalore and marched by the usual route for Madura on the 13th October 1875, but on entering Salem on tho 22nd were put in quarantine by the District Collector in consequenco

The Party leaves Bnagalore for the Field, but is stopped by cholers and brought back. of cholera of a virulent type having broken out amongst them, three cases proving fatal. On hearing this I proceeded to join the party at once by train with medical aid, and found them in a state of panic and desertiog rapidly. All the newly engaged men refused to go od, demanding their diacharge or to be taken back to their lomes and families at Bangalore at once. Cbolera being ver'y prevalent in tho Dindigal and Madura districts ahead, and worse in rear on the route by which they had come, 1 felt obliged, as they positively refused to remain where they were, to take them by railway to Mysore Territory; and no fresh cases of cholera occurring, they obtained a clean bill of health and were marched into Bangalore under Mr. Bryson on the 2nd November.
(3.) After recruiting the party in numbers and morale, the entire party ngain left Bangaloro

## Finally tales the Field.

fur the field, proceeding by rail as far as Madura on the 15 th November, and commenced the approximate series operatious for the season at Kámnád on the 1 st December, haring left the $2 t$-inch Theodolite in deposit at Madura, there to remuin till actually required for the final observations.
(4.) I mude the following arrangements and disposition of the party for the prosecution of the work. 'The country to be traversed being low, flat, and much

Plan of Operations, Approrimate Series. wooded, like that reported on last season (para. 24 of my lnst annual report for 1874-75), and very few stations and no rays being ready for observations, I threw our whole strength upon the approximate series, and divided the entire party into five pretty equal working parties, one each for my four nssistante and moyself. Mr. Belcham was to keep to the east flank stations and rays, Mr. Potter to those of the west flank, while Messrs. Linseron and 1 'ryson (the latter in company with myself; being new to this kind of work,) were to prepare the centre of the series.
(5.) From the unusually henry rains of the autumn, the country was at first barely pnosible, Actual Progress. which hindered us much. On the east flank and centre we got on as well as we could expect, but on the west Messrs. Potter and Laseron were greatly delayed on their first rays, although they were between stations which they had theuselves selected and built at the close of the last season. I need not however here particularize the share of the work taken by each of us, as it is all shown in detail in the tabular statement attached as ueual to this report; sullice it to say that ly the end of January, after two months incessant hard work, we bad only completed two hexagons; and as it was high time to begin the final observations I sent for the regular enrriers to loring the largo theodolite, and began the final observations on the 9th February, taking Mr. Bryson with me to record.
(6.) I nest proceeded to the centre station Manegandi, and obsorved the usual azimuth of

The final Observing begun. verification, in which I may remark that I found no inconvenience, want of stability nor any unusual tendency to dislevelment, in the theodolite, from the use of my high ( $17 \frac{1}{1}$ feet iripr d) siand.
(7.) I now called in Mr. Belciman to take up tho final observing with the 24 inch theodolite, leaving Messrs. Potter and Laseron to continue the approsimate series in advance for next senson, whilst I proceeded to complete the Rámesweram Island Series fur the Ceylon Counection; which I found Island
prepared. no great difficulty in doing during the mouth of March.
(8.) Meanwhile Mr. Belcham had olserved the final angles at seven of the ten remaining stations of the man series-a good month's work I consider-and now proceeded to observe nt the nine stations of the island series, all which he successfully completed on the 25 th April, nlthough be

Final Obsorvations continued by Mr Belcham.
was considerably delayed by contrary winds nad foul weather: at one station he obtained the first night's obserrations but could got no more for sume days until he had mised the instrument on piles sbout $\$$ fect higher, owing to the setting in of an unusually ligh southerly wind which raised the waves of the intervening aca.
(9.) The station on the and hill near Rnmesweram observed to last senson could not be

The Rúmesweram Sand Iill Station. found, having been buriod deep in the shifting sand, and it was necessary to establish n new oue. 'I'bis station caused me much
anxiety, and I spent much time in watching it during the observations, lest it should be blown away or buried again. It consisted merely of a loug 10 feet pile of hard wood driven into the sand at the top of the highest hillock, where there remained just below the surface some of the moisture of hast autumn's rains; but ne fast as the sun evnporated the moisture, the wind which was uncommonly high for the season, blew awny the surface sand daily to the depth of 4 or 5 ibches or more; and it was only by continually replacing the sand, nad by freely watering and beating it to a smooth und compact mass, that the pile and mark were preserved.
(10.) After seeing the completion of the island series, having obtained furlough to England, Completion of the Field Scason's I left Mr. Belcham to observe the remaining angles of the mnin series Work. at the three lnst stations, which he finished by the 4 th May, whilat I proceeded to Bangnlore to make over charge of the party to Captain W.M. Cainpbell, R.E.
(11.) Briefly stated the sensou's outturn of work consists of 17 new principal stations,

Outturu of Work necessarily small. fixed by 21 triangles forming three hexagons and n quadrilateral, extending the series 80 miles (half to the north, and half to the enstward,) besides an astronomical azimuth of verification. Owing to the flat and wooded atate of the country the aren of the trinagulation is exceedingly small : but few secondary points or land marks could be fixed, and but two figures in advance have been prepared for next season, and I much doubt if any greater rate of progress can be expected until the country becomes more favorable for trigonometrical operations.

## The Aesistauts.

The Surveyor, Mr. Belcham, and tbree Assistant Surveyors attnohed to the party have all worked hard and well.

# Appendix to Major BRANFILL'S Narrative Report by Captain W. M. CAMPBELL, R.E., Officiating Deputy Superintendent 2nd Grade, officiating in charge of the Madras Party, dated 3 rd October 1876. 

(2.) Major Branfill rccommended my taking steps during the recess for raising the stations Increased Heightof Stationsadriaable. in order to obtain clearer rays, and gave it as his opinion that the Height of Theodolite.
best way of doing so would be by increasing the height of the, $17 \frac{1}{2}$ feet braced tripod stand for the 24 -inch theodolite. This stand was used throughout last senson on masonry pillnrs about 8 feet high, built to support the feet: thus the height of the telescope of the theodolite became $8+17 \frac{1}{4}+5$ (about) $=30 \frac{1}{2}$ feet above the ground.
(3.) The usual height of the signal platform wne about 40 feet, and this Major Branfill seemed

## Height of Signal.

to think could not easily be increased. For my own part I felt more inclined to raise the signal if possible, than to alter the tripod stand, considering the slight trouble and expense involved in raising the masonry pillars carrying the latter, if incrensed height of the observing station should still be necessary. I nccordingly had a trial aignal platform erected and obtained a height of 58 feet without serious trouble. Mr. Belcham watched the behnviour of this platform by observing the lamp on the top through a theodelite at a convenient distance, and he found that under a strong breeze blowing in gusts the extreme deflection was not above an inch, the platform recovering itself when the wind dropped. This is, I think, highly antisfactory and shows that such a platform may be well trusted for rays averaging 10 miles in length, on which one inoh subteuds an angle of about 0.33 second.
(4.) Major Branfill also drew my attention to the difliculty of plumbing the lamp at such a height as 40 feet from the ground, except in the calmest weather, without some shelter for the plumb-line. To obviate this I have had
Difficulty of plumbing. cloth funnels constructed to protect the line from top to bottom.
(5.) As regards the work of the recess-it has been carried on very satisfactorily under the

Recees Work.
warded to Hend Qunrters.
(6.) There in one point in the reductions which calls for notice, viz:-the remarkable and immediate charge of Mr. Belcham, nnd was completed by tho 21st September, on which date the original records and chart were for-

## Apparent Error in trigonometrical Heights.

 rapidly increasing difference between the sea level nud that deduced from the trigonometrical beights of the triangulation running along the const, with one flank on islands, and latterly entirely on islands, for the purpose of the Caylon Connection. By spirit leve!ling connecting the tide-gauge at Tuticorinwith the Cape Comorin Base the error of the trigonometrical heights there was - 7 feet. In the season 1874-75 when the series first struck the coast, 110 miles from the Base-line, the error was found to be -10.7 feot, increasing to -12.4 feet in a farther distance of 30 miles. Last season starting with this error of -124 feet we close with -147 feet, after two figures extending 40 miles over sea and islands. The progression is ly no means regular, as we have cases of -18.7 feet and -17.2 feet between the initial and closing errors of -124 and -14.7 feet respectively.
(7.) These facts tend to show that the refraction affecting grazing rays over the sea is so irregular as to make vertical angles untrustworthy, but I can nee no reason why the result should be cumulative, as it certainly Causes burnaisod. appears to be, although I have examined the chart and attempted to find some connection between the growth of the error and the relative positions of the statious as regards their heights, diatances npart, and whether the ray passes chiefly over land or sea. The signals obtained were, as might be expected under the circumatances, very bad and wild, having the appearance as Mr. Belchan says of "pillare of fire".
(8.) The references to sen level are of course only approximate, but they were made with Hough Tidal Observations. some care and cannot be more than $a$ few inches in orror. They were oblained by obsorving the height of the tides on $n$ stake driven into the bed of a sheltered pool, or pit on the beach, just under the station, and measuring the actual height of the station above the mean sea level so arrived at.
(9.) I have to thank Messrs. Belcham, Potter, and Bryson, for their steady application in office.

## II. Extract from the Narrative Report-dated 7th August 1876-of Lieutenant H. J. HARMAN, R.E., Assistant Superintendent 2nd Grade, in charge of the Assam Valley Triangulation.

(1.) The preliminnry work of the principal series, executed in advance at the close of the field season $1874-75$, consisted of 5 rays, 4 post stations, and 2 lines in progress; forming 2 triangles which had not been observed on account of the senson being so far advanced, the Dimú station practioally inaccessible, and the dificulty of getting at and removing some obstacles from the line Bor Ghop to Melankúr: two rays had been cut from a side of the principal series to fix the treasury building in the civil station of Jorhat. Two rays cut to the Revenue Survey pillar on the south bauk of the Dilchu rivor, near its mouth, were also reported open.
(2.) With a party of men I left Gauháti, by stenmer, and arrived at the ghaft for Jorhat on the 3rd November 1875 , starting field work the following day. In re-opening the rays forming the Jorhát triangle one line gave trouble. 2 miles of forest fulling in this ray, I found that one edge of the ray required much brushing. I observed the angles of this trinngle and then re-opened the triangle to the Revenue Survey pillar of para. 1, and observed the angles: this done 1 re-opened 4 rays of the past season's work, cut some 5 miles of pathway, repaired three stations, erected three signal platforms, observed augles at one station, and collected stores of rice and dhán. Thus was I occupied till the 26 th November 1875, when I was joined by Mess's. W. J. O'Sullivan, E. P. Wrixon, and J. F. McCarthy, who arrived from Gaulati, by march, in charge of the main camp.
(3.) Mr. O'Sullivan unfortumately got an attack of fever ac., but was sufficiently recovered and able to start work at the Dimú station by the 14 th December. Mr. E. P. Wrixon commenced work at the Dimú station on the lat December. From that date until the 8th Jantary 1876 he was employed in re-opening 4 miles of the ray Dimú to 'Tengapania (out nas a final line the previous senson) and carrying it on for another two miles towards the Jntter station, which also he built. On December l2th I assisted him in completing the remaining $1 \frac{1}{5}$ miles to the Tengapania station. Mr. McCarthy joined the party at Gauhation November 4th, marched with the main camp to the field, and began his ficld work on the 10th of December 1875. Between November 2(ith aud December 10th I re-opened 2 more old rays, repaired ono station, observed angles at 2 stations, and cut a trial ray (half of which had been cut the previous senson) and gave to Messrs. O'Sullivan and MeCarthy the data for cutting the final ray, which they finished by the 23rd Decomber. I have now shown how Messrs. O'Sullivan and McCarthy wero employed up to the 23rd December, Mr. Wrixon to the 8th January, and myself to the

13th December. So far nothing wortliy of remark occurred, unless it be the heary cutting on the ray Dimú to Tengnpanin which had nbsorbed the labor of a strong party for $2 \frac{1}{4}$ months.
(4.) In re-opening old raye I used to visit the line at points about half a mile apart, ascend a portable ladder, and so direct the cutting of only that growth which showed above the line of grass: it was astonishing the height to which some of the shoots from the tree stumps, bumboos \&c., had sprung up in the few months that had elapsed since the lines bad been cut through. In most instances 1 placed the signals on a frame, fastened to the wooden top fitted into an iron telegraph standard and socket, the post being isolnted and fixed in position by wire stays. The signals were stendy in a fresh breeze, and the height of 30 to 33 feet thus obtained for the signal proved sufficient on all the lines except one, where it was found that the distant heliotrope was obstructed by grass on a high bank, somewhere nbout the centre of the ray, from the instrument placed at 21 feet above ground. On this line I observed angles to grazing heliotropes nad in consequence the triangle produced a large triangle error. The delay thus ocensioned would not have occurred, had I provided myself with a 7 or 8 feet portnble stnud for the theodolite, for it is evident that with an obstruction on the ray nearer the instrument than the distant signal, an increase of 3 or 4 feet givon to the height of the instrument stand is much more effective than the same increase of height given to the signal, but I did not think such a stand would be fomad necessary, as all the grass on the rays of the previous senson had then been cut to the ground.
(5.) On the 24th Decomber Mr. O'Sullivan began the ray Tongapania to Dihing, completing it and tho building of the Dihing station on the 30th December 1876 . He then took up the ray l’aonriputra to Buri, finishing it and the building of the Paonriputra station by the 25th February. The tups of the posts of this station were 25 feet above ground, and it was a particularly well built and gool station. He was then employed on the preliminary work of the branch series from Dibrugarh to Jaipur. On the 20th April I found it necessary that he should take up the line Rajabeta to Dibrugarh which had beeu over 2 months in Mr. Wrixon's hands. Mr. O'Sullivan cut an entirely new and successful line in 6 days between the 28th February and May 10th. He had cut on the branch series to Jaipur, one final ray, 8 straight narrow gaps fixing the sites of 6 stations, and had built one post station : he also erested a scaffold 80 feet high so as to obtain the line from the Timolikhat station to the Hilika bill station of the Revenue and Topographical Nurveys, in the Naga hills, but bad weather prevented any observations to it. Mr. O'Sullivan closed work on the 10 th of May and left for Gaulatiti with his party by steamer on the 13th May. He was pmployed at Gauhati on various work until June lst when he proceeded on three months privilege leare. 1 have much pleasure in stating that I am well satisfied with the care and labour he bestowed on his work, its style, and the large amount of out-turn.
(6.) On the 8 th January Mr. Wrizon took up the ray Tengapania to Sisn completing it on the 29th Jnnuary: on the 5 th February I assisted him in starting work on the line Kajabetn station to Dibrugarls church. The building of the Rnjabeta station and the cutting of the two rays from it to the Khalknta and Buri stations, as far as the left bank of the Brahmaputra, were also entrusted to him. On the 20th April Mr. O'Sullivan took over charge of tho work on the Rajnbeta-Dibrugarh line, and Mr. Wrixon shifted noross the river, built the Khalkath station and cleared the few trees standing on the line from it to Dibrugarh church: he then ran the sext north flank ray and built the station of Saenga Jan; removed the trees on the lines from it to the Mekla station and Dibrugarh church: he then took up the next flank my; and on May 12th, finding the line in diflicult awamp and canc forest, 1 closed the work of his detachment for the semson. On the 27 th May Mr. Wrixon left by ateamer for Gauháli, and reached Shilloug on the 3rd June.
(7.) On the 23rd December Mr. McCarthy took up the widening of one of my narrow gaps nad finished it by December 26th: on the 29th December I assisted him in starting worls on the Sisn-IIealmara line, which was out of hand on the 14th Jannary. He then built the station at Healmara, ran the next flank ray and built the Buri station, cut two final rays, (data for which 1 had provided by two trial lines,) ran one more final ray, and cut the line Buri-Rnjabeta ns far as the right bank of the Bralimaputra : all the above work reported out of hand on the 25 th Februiry 1876 . Mr. MeCarihy completed the line Paobriputin to Khalkata on the llth March, and then crossed over to Dibrugarl, and opened out as final rays 6 lines forming the right flank of the series, from Dibrugarh up to lobha Revenue Survey masonry pillar; built one post station, nond also all but completed the three rays from the station of Silani, (selected by him on tho $N$. bank of the river, to three of his stations on the S . bank. Rad wontber and the rise of the river compeling him to return to Mekla he finished the building of that station on the 2nd May 1876, remaining there until the 13 th of Mny obmersing to hill penks. He then at Dibrugarb observed to the hill peaks until $24+$ h May 1876, and on the 27 th he loft by steawer for Gauhati and arrived at recess quarters in shillong on the 3rd Junc. Mr. McCarthy displayed considerable and unremitting energy in his work. This was his first
season's employment on triangulation, and the successful why he managed it and his large out-turn reflect great credit on him, and 1 have every reason to be well plensed with his neaumis work.
(8.) At the close of para. 3 the ncoount of my work is brought up to the 13 th December 1875. Till January 1st I was engnged in observing from three stations, on the repmir of last jear's station of Sisa, and the clearing away of all the trees up to the river bank on 4 lines that converge upon this station. I also ran one trial gap and nfterwards widened it into a final ray. Juring Jamuary I cut four trial and 3 final rays, built one post station, and was for 10 days occupied in various work; such as searching for the Khalkata Revenue Survey masonry pillar; traversing to obtain data for the line Lorua to Sisa; raising a mound of earth at the Rajabeta station, and erecting there a ladder 70 feet high; laying out a ray trace as a guide for Mr. Wrixon in determining the line Rajabeta to Dibrugnrh church. On 2nd liebruary I left my head quarters at Dihingmuk to help Mr. Wrixon to start work at Rajabeta. Thence 1 marched to Juipur, at the foot of the Nagn hiils, and rettled the situntion of the statious on the N . Anank of the branch series Dibrugarh to Jaipur. This is intended to connect the principal triangulation with the Revenue Survey hill stations, Deohnl, near Jaipur, and Hilika, about 7 miles S . of Jaipur, close above the Disang river, on the outer range of Naga hills. This latier station is also common to the Topographical Survey of the Naga hills. 1 cleared the Deohal hill of jungle and found the marks, both ou it and the Hilika hill, intact. From Jaipur I marched neross to Sadiya and met the Depaty Commissioner of Dibrugarh, to whom I explained the advantage which the survey would gain, if' a certuin hill peak on the outer range of the Abar hills, north of the valley, could be occupied as a station. From Sadiya I passed down the river to Dibrugarh and selected the sites of all the stations, except 3 , which would form the principal series extending from Dibrugarh to Sadiya.
(9.) On the 25 th February I left my head quarter camp for a Miri village at the foot of the Abar hills ou the right bank of the Dirjimmu river. The Deputy Commiseioner Lad interested himself in my project for visiting the nbove mentioned hill peak and $I$ had received good information that several Abar chief's (who had been informed) were assembled at the above Miri village and had expressed their willingness to conduct me and my men to the hill I had pointed out. But my interview with the A bar assemblage was unsatisfactory, and I had to break up the meeting, as each man in turn stood forward and forbade the journey: they said "the entrance of strangers into their hills was unprece-dented"-" they did not much oliject to iny going alone, provided I made no map for the Queen to see, who would in consequence promptly claim them as subjects"-" they could not allow miy men to goand cut down their trees on the hill tops and make marks dc." I had no time to spare for a pleasure trip, and 1 did not go. Wark to luminous signals could not well be undertaken if a strong probnbility existed of the signal parties being molested, hindered, or communication with them in any way obstructed: besides in the densely forest-clad country of the hills and valley north of the river, for speedy work, guides are vel'y necessary. The above circumstances I reported to the Deputy Commissioner and to Head Quarters.
(10.) On March 3rd I went in pursuit of a runaway elephant, a fine tusker attached to Mr. Wrixon's detuchment: alter 3 days' traeking $I$ came up with him, but could not get him to stand: on The fourth day I left a femule elephant and a party of mahouts de. in the forest, and marched for Diling station to go on with the observations. During March I closed 5 stations, and was detained in all 7 days in removing from lines obstncles which wholly or partly obscured the distant heliotropes. On April 3rd I heard that the runmany elephant had been enticed into more open ground and that the efforls of the three kunki (trained) elephants obtained for the purpose of his capture had proved ineffectual ; so I again left my work, chused him about for four days and prevented his getiing sleep at night, and on the moruing of 8th April, he was secured: he was in capital coudition and had been loose in the forests just five weels.
(11.) After inspecting the work on the Rajabeta-Dibrugarh live, I completed observations at 2 stations by the 13th April. Onarrival at my next station Buri I was distressed to find the line Burí to Rajabeta quite wrong, and I had to cut an entirely new lino from end to end; this caused me greal delay and proved a difficult task. I had only 8 men with me for work; the river lind risen high and filled all the side chamuels of the river, which were dry buta fow days previously; added to this, henvy rain set in on the 21 st April, mists rose on the river at night, and my observations practically censed for 7 days: it was the 9 th of May when I fimally closed the stations of Buri, Rajabela, and Paonriputra. Betweeu May 10th nud 18th I observed angles nt 4 new sintions of the serics, visited the three detaohments of the party, and then went down the river to revise the angles at Sisa and Kherkutia alations of the triangle mentioned in paragraph 4 as haviug a large triangular error. I got clear signals, and the new nugley differed from the former values by amounts having the same sign (the new angles .were both greater, ) proving that the former angles were vitiated by the graze; and the difference being almost equal in amount showed that the obstruction would probably have been found near the middle
of the may, as I thought it appeared. Having visited Lasun station to observe to hill peaks, without success, on May l8th I ennght a downward stemer and reached Gauhition the 2lat May. after arranging the affairs of the party nad secing the building of the elephant shed ic. neurly completed, I left for Shillong on May $24 t \mathrm{l}$ and arrived there on the 25 th.
(12) The oollection and distribution of provisions gave much trouble and Inbor: nearly all the rice and dhán was obtniued by private purchase from the villages about Jorhat and sibságar, on nccount of the very high prices ruling in the Dibrugarh bazar and district. Excepting n few Miri vil. lares, there nro no inhabitants in the vicinity of the greater part of series: no local labor was available or procured. In getting parties of sugnallers de. passed neross the river and side chnonels of the river many vexntions delags occurred, the men often having to go long distances out of their way to get put across the water. The weather for work on the preliminary series was all that could be desired until A pril 21 st, when very bad weather set in. The general health of the party was excellent.
(13.) Many difficulties were met with in taking the observations: most of the rays were nearly grazing rays; the greater number passed more or less over the river, and the signals at 9 a.m. and 3 a.m. were as a rule very wild. For 3 days in March and 2 in April so thick wis the baze and smoke orer head that the heliotropes barely showed at all; and on 2 days I got little work on account of a gale from the north west, which blew such dense clouds of sand down the river as to cunse the heliotropes to be visible for only short intervals. I had very bad luck with the work to hill peake, and did not obtain 20 angles before A pril 20th; afterwards I was more fortunate.
(14.) All the post stations on the south bank of the Brahmaputra except one stood on firm soil, and when the posts of the station and the instrument were properly protected from the wind by screens of grass \&e., no difficulty on the score of instability arose; but not so with those stations built on the north side of the Brahmaputra, which were built on and : the usual grass sereens for the wind caused the platform to vibrate, and the tremor was communicated to the instrument. I found it lest to be content with only a bit of cloth as shelter for the portable instrument stand. At Pnonriputra ( $a$ remarkably strong and well built 25 feet post station) it happened that one of the huts for the men was placed about 120 feet distant from the station, and if by chance a man threw down a bundle of firewood at the door of his hut, or chopped a bit of wood, the jog given to the instrument would quite throw off the intersection of the distant signal : one day I mensured $n$ distance of $\mathbf{1 7 2}$ feet from the station pillar to where a man was sented fashioning a tent peg on a block of wood, the blows of his dao spoiling my angles. At evcry station on the north bank of the river, if n man came at all quickly up the ladder to the phatform a strong tremor was visible in the telescope. To build a station different to the ordinary pattern, ou sites of hard sand with a water-logged stratum ouly $n$ few feat below the surface, did not euggest itself to me as necessary till after the stations had been built and observing had commenced : obviously, better isolation for the posts of the instrument, and comfortable work would have been obtained, if the uprights of the observer's platform had been apread nut so that their feet were distant from the three posts, the uprights being supplied with plentiful bracing well nuiled, the feet of the uprighte not beiug sunk in the ground but resting on planks, and so forth: this senson the only result has been that the observations required painful enre. 'l'be average triangular error of the principal trimgulation is 1.15 seconds.
(1.5.) The analysis of the heights observed is as follows:-(1.) On 22 rnys passing over land and wnter, comprising 303 observations, the factor of refraction is on every ray negative, the mena value being - 066. (2.) On 2 rays passing almost entively over the river, and respectively $10 \frac{1}{3}$ and 7 miles in length, comprising 36 observations, the finctor on each ray is positive, the mean value being +068 . (A.) Un 6 mays converging on the lotity atations of (Aaoriangar temple ( 90 feet) and Dibrugarh church tower ( 50 feet), comprising 84 observations, the factor on each ray is positive, the mean value being +035 .
(16.) The bill peaks observed to extend up to a line bearing from Dibrugarh church $20^{\circ}$ east of north.
III. Extract from the Narrative Report-dated 19th July 1876-of W. G. BEVERLEY. Esq., 0 ffciating Assistant Superintendent 2nd Grade, in charge of the Burmah Party.
(2.) It will have been observed from last year's Report, that the triangulation carried on in 1874-75 had not been fimally connected with the Eastorn Frontier Series. This work was therefore first taken in hund, so as to furuiah at an early date the accurate positions of points along the coast for the

Marine Survey. A new light-house about five milea out at sea was also in course of construction, and it was necessary to get some observations frou the top of the old light-house before it way dismantled, in order to obtain data for opening a ray to the new light from one of our stations on the coast. The programme of work for the seasou of $1875-76$ was, in aldition to the alone, the extension of the triangulution along the coast towards the Krishan Shonl light-loouse, three chains of secondary triangles to start from principal sides of the Eastern Erontier series, one vid I'onghon to the Buludary to the north, a second via Prome and I'hiyetmyo to the Boundary, and the third via Bassein to Cape Negrais to the south.
(3.) I left recess quarterg at the end of September to be in time to visit the old light before removal. I visited the place on the 10 th of October and obtained the requisite observations, having had to wade through about in mile of mud und water under a burning sun. A touch of malarious fever onmpelled me to abandon the work at that time; in fact it was impossible to effect any ray clearing with the country entirely under water.
(4.) In order to complete the conneotion of last year's work with the Eastern Frontier Series, I reconnoitred the country and selected a site for a station which was to be employed in addition to those already selected. I also took observations at three other stations, and obtained data for opening the ray Chanakpho to Chaglibai. I decided upon using the priucipal stations of Chaiteo, Chaideo, and I'hulú, of the Easteru Fronticr Neries, as the atatious of origin.
(5.) After various delays I was enabled to leave Rangoon by the steamer of the 27 th of November to take up the triangulation down to Cape Negrais. Before commencing, I went up to Prome to see how Mr. Low had laid out his work. I visited my first station on the 10 th of December and closed work on the 15 th of A pril.
(6.) The country traversed by me in the Heuzadn district was a difficult one for trinngulation: it was impossible to get on to the main ridge running parallel to the Irrawaddy, while the spurs from it were not only very densely wooded but were not long enough to admit of both giank stations being selected on thera. The country between the river and the foot of the hills is very well populated, but no villages exist up the lateral ravines, and the villagers decline to go beyond a certain distance from their houses from a dread of wild animals and malaria. In most large ravines timber is felled to a considerable extent and thore are several cart roads made for conveying the same to points whence they can be flonted down: it was not therefore difficult to procure carringe nor except occasionally was any diff. culty experienced in obtaining coolies to visit the hills not remote from the villages.
(7.) The country between the river and the foot of the bills is occasionally undulating and covered with patches of dense forest: this added to the difficulties of selecting stations. I succeeded however, by using some stations in the plains on one flank and avoiding intermediate raya, in carrying the triangulation down to within 32 miles of Bassein-a direct distance of 81 miles. The hills here are very low (the formard station being probably below 200 feet) and are a series of plateaus densely wooded. The elearing of auch hills in one of the hottest months of the jear was likely to occupy three weeks and more, and I considered it advisable to close before the heavy rains came down and rembered the return of elephauts to Rangoon a dangerous business. The haye prevented Henzada being fised this yenr, the station being over 30 miles in a direct distance from the nenrest trigonometrical stations on the hills; but this will be readily done at the commencement of the next Geld senson.
(8). Mr. Low was transfured from Head Quarters and joined the party on the 22nd of October. He was deputed to take up the tringgulation from near Prome vid Ilháyetmyo to the British Boundiry on the north. Owing to the high road to Prome being taken up for the railway, Mr. Low was compelled to bave his baggage and eatablishment brought back from the 40 th mile, and to ieave Kangoou by steamer for Prome: he commenced work about the end of November.
(9). The principal station of Yourdong near Prome, one of the stations of origin for Mr. Low's triangulation, was found to have the markstones dug ont, and a great oblong hole existed instead of the pillar. He was therefore directed to fall back on Kidong station and to use Yongdong, where he put in a mark as an entirely now station.
(10). The country trinngulated by Mr. Low lies on both sides of the Irrawaddy river and is denaely wooded. Although well populated, it was difficult to get carriago, nind it was rendered more diflicult by the inadequate assistance afforded him. Mr. Low's reporte are a record of delays and diffculties which would have damped the ardour of a lese pealous surveyor.
(11). Though new to the country and the language Mr. Low has completed $n$ very satisfactory neason's work. He has carried his triangulation up to the Bonudary, a direct distnuce of $\mathbf{G} 0$ miles; fixed numerous pointa in the civil and military stations of Prome and Tháyetonyo; and covered with trigonometrical pointa an area of about 3640 square miles. Mr Low has also furnished a very large number of heights, and given the means of malring a connection between the railway nad trigonometrical levelling for comparison or otherwise. I'he party has been ver'g much strengthened by the additon
of an officer of Mr. Low's ability and zeal. He returned to recess quarters at Moulmein on 3rd of June.
(12.) The trinngulation for conmecting the worlc of the previous season with the Enstern Frontier Series was made over to Messrs. Mitchell and Collins, to work simultaneously if possible, one in the Tenasserim district, nud the other in the Rangoon division. In order to ubtain correct values at an early date, Mr. Mitchell was directed to visit the station of Kalamatong of the Enstern Frontier Sories, close to Moulmein, and from it to observe Rangoon and Siriam pagodas, nnd thereby furnish direct values of these two points to be tested by the values obtained from $n$ series of triangles.
(13) Mr. Mitchell went up to Kalanatong on the 28th of October and obtnined his observations to Rangoon and Sirinm after some delny, owing to the station being occupied by Mr. Rossenrode's niguaimen, and from the mists rising up from the Gulf of Martaban, over which the rays passed. Mr. Mitchell subsequently visited three other prineipalstations of the Enstern Frontier Series, and completed his observations on the Tenasserim side by the 17 th of December, having been delayed very much by bad signals and unfarorable wenther. The distances from these three stations to Máko on the Rangoon side are between 41 and 56 miles, and from Chaiteo to Chaglíbá 55.7 miles, and these long sides considerably returded the work of both Messrs. Mitchell and Collins; the signals shewn being at times very faint, and at other times too unstendy to intersect, due probably to the vapour asceuding from the vast expanse of the Gulf of Martabin.
(14.) Mr. Mitehell also visited the four stations of Chaglíbń, Chanakpho, Miko, nnd Dalabńa, on the Rangoon side, in order to complete the obvervations which Mr. Collins wus unable from various causes to ubtain: he nlso opened the ray between the first two stations. 'llhese four stations were intended for a quadrilateral, but on nccount of large trinngular errors, two triangles were rejected. These errors appear to be due to the rays passing over marshy ground, and over rice fields. I'liese observations were completed by the 7th of February, and Mr. Mitchell proceeded to tnke up the triangulation vid l'onghoo. The dato obtained from these observations enabled me, early in March, to furnish the Master Attendnnt with the approximate position of the new China Bakir light-house: this position is very near the accurate one since supplied him.
(15.) 'I'he haze which had set in when Mr. Mitchell took up the Tonghoo triangulation, prevented his taking any final observations from the starting side which is about 33 miles in length. Having visited one of the terminal stations viz. Myaynbengkyo, he reconnoitred the ground selected nad eleared five hills and laid out the triangulation up to Tonghoo, and returned to take up the observations. He was unable to take final observations from more than one station, viz. 'loungí; nod a few from Jháyekhí the olher sfation of the starting side. 'l'he rains had now wet in, nad he was directed to close and return to recess quarters if he considered there was too much risk in keeping out an establishment exposed to continued rain. 'lhe observations should be carried up to Tonghoo by an early date next senson, and I bave every hope that the trinugulation between Tonghoo and Tháyetmyo along the Boundary will be out of hand next senson. Mr. Mitchell arrived in recese quarters on the 8th of June having suffered a good deal in henlth during the field senson.
(16.) Mr. Colline took the fieid on the 28th of October and went to Shánteji station to take an anglo there, which could not be obtained last year. The country being here atill under water, ho proceeded and built Mako station on the top of a high pagoda. He visited Malso, Chaglíbne, and Dala. bón, in cunnection with Mr. Mitchell's work mentioned above, and having taken ns many angles as he oould obtain be returned to talie up the triangulation nlong the const. As it was necessary to obtain data for opening a ray from Mengilon to the new light-honse, he meanured a base carcfully on the sea oonst, as the only menns whereby nn nccurate nagle for giving the ray could be obtained. The ground between Mengálon siation and the sea const is low and swamp, and he had great difficulty in opening this ray. Iater on he visited tho new light out at sen and took observations off the staging between Mengalon station and Elephant Point Column. Mr. Collins reports that the aea was very rough (being the noth-east monsoon) and thero was a great denl of vibration from the force of the waves atriking against the staging. The horizontal angles were very accordant. 'The side Meugilon to Elephant Point obtained from the bnae measured on the const, agrees remarkably well with that deduced from computations brought down by triangulation, and was used in the approsimate computation of the latitude and longilude of the new light-house.
(17.) On completion of this work Mr. Collins took up the continuation of the trinngulation along the const from the side Danot to Motyúa. He carried three trial lines brtween Tachin and Mengalon, a diatnnce of 11 miles, over a tract of country where there was extreme difficulty in procuring potable water which was ouly obtained in very small grantities and at villages remote from the ray. Ho took final observations and completed one quidrilateral, opening the intorvening raya; and selected the nites of $\mathbf{G}$ stationg for future work. 'Ilie sites selected appear to be judicious, and undor favorable oireumstances the triangulation will probably reach Kriahna Shoal next year.
(18.) The country along the const is low and swampy, intersected with numerous tidal creeke, with very few villages and these far apart. It is under waler to about the middle of January, aud there are no menns of moving about except by boats: after ench flood tide the ground is submerged to a good distance on each side of the creek, and Mr. Collins had to do most of his marches on foot, rading through slime and wet. The country was the most diflicult and trying in Burmah, and Mr. Collins deserves credit for sticking to his work in spite of frequent nttacks of illness, nlthough his out-turn of work is small. The experience however that he has gained will be of considerable adpantage to him next season. Mr. Collins returned to recess quarters on the 20th of May.
(19.) The men of the Native Establishment have not worled so satisfactorily the Inst senson, the signallers having in repeated instances given a great deal of inconvenience and caused loss of time.
(20.) Tabular statements showing the work done by each officer, accompany this report, and I trust that considering the unfavorable circumstances under which work is obtained at all times in Burmah, the out-turn of work for the past season may be considered satisfactory.
(22.) The Master Attendant at langoon, Captain Arnot gave every assietance required to Mr. Collins while employed in fixing the light-house. 'I'he work of the Survey always progresses satisfuctorily when the District Officers nssist the Surveyors. The Deputy Commissioners of Rangoon, Heuzada, and Tháyetmyo, furnished parwanas immediately on application, which were very serviceable, because the Burmans pay every respect to n document bearing the official stamp of the court. The Doputy Commissioner of Prome however refused to give Mr. Low n paricana and his refusal was confirmed by the Commissioner of the Rangoon Division. The consequence was serious delay and unnecessary expense entailed on the Government.

## IV. Extract from the Narrative Report-dated 18th September 1876-of W. C. ROSSENRODE. Esq., Deputy Superintendent 3rd Grade, in charge of the Eastern Frontier Series.

(2.) The duration of fine observing wenther being no short in Burma and the sides of some of the triangles being unavoidably long, owing to the inaccessible mural limestone ranges falling within the triangulation, and it being utterly impossible to make use of any point in them, I had no alternative but to resume field operations earlier this season than I usually did, to endeavour to complete the long sides before the setting in of bad wenther.
(3.) Mr. J. O. Hughes was posted to this party by Department Order dated 1st September 1875, and finding that he had had some experience in Assam I determined upon detaching all my three assistanta and retaining my Burman writer to record for me in the observatory as he did during the previous field season. Mr. Hughes joined on the 23 rd October in a bad state of health caused by an injury he had sustained at Agm, and finding him completely prostrated, I had to alter all my arrangements.
(4.) Mr. Clances having rejoined from privilege leave on the 23rd October was directed to nssist Mr. Beverley in the office.
(5.) I took the field on the 26th October and began final observations at Toungzún H.S. near Moulmein, clouds and rain interrupted my progress. I however completed my observations on the 5th November and returned to Moulmein to rearrange my plans. Mr. Beverley was requested to tnke up the approximate triangulation on completion of the oflice work nud Mr. Clancey was instructed to fix a principal station on the enstern flank, which was required to complete the figure previously formed. After selecting, building, and preparing the nlove atation, Mr. Chancey was to visit each principal station, and to observe all the high peaks to the east, in the interior, connecting them with one of the principal stations of the series. On completing his observitions at each station on the castern fank, he was to construct a rectangular pillar on it, and mako it over for safe custody to the local officiala before quitling it: in this way he was to visit seriation each principal station of the previous season.
(6.) The country being still under water it was utterly impracticable, nay impossible, to march; I therefore engaged bonts for the whole party, baggage, instruments, and provisions, and proceeded to Wabiantong H.S., which is 2 miles distant from the Salween river. After the observations were completed the whole party got into the boats and dropped down the river, and encamped at the foot of Mizantong H.S. the snme evening. This hill is composed entirely of limestone and the road to it ras originally prepared by Mr. Beverley when ho soleoted the station. The tindnl was sent to re-cut and improve this rond, as the hill was anid to be most difficult of necess. He and his party were employed a whole month in altering, improving, and making it practicable for conveying the 24 -inch Theodolite. With
all his ingenuity and labor the instrument was taken up with diffoulty after much toil. I personally superintended its transport, and bad the whole establishment to assist: 4 strong new ropes were nttached to the box and 6 men holding each rope commenced nscending the hill, dragging up the instrument carriers, thus assisting and supporting them to climb the steep, rugged, aud narrow path, step by step. To prevent nccidents from breaknge of ropes, I followed with a number of men who supported the carriers in the rear, and raised the box when necessary over the obstructivg rocks in the passage. The instrumeut reached tho summit in arfety, and as the observatory tent could not be pitched, owing to one face of the hill being a perpendicular precipice, the base being seen from the summit, I improvised a temporary one with wood, bamboos, and grass. The station being very much exposed, no reliance could be placed on the supports of the hut which, owing to rocks, could not be driven into them, but rested in fissures, clelta, and indentations found in the rocky surface; I therefore observed duringday light only, taking the precnution of being present all the time the instrument was in position. After sunset the theodolite was bosed, and I retired from the observatory.
(7.) Knmakabo, the most difficult station of the season was pext visited : it is the centre of a pentagon and is surrounded by an extensive marsh. The hill is very precipitous, of limestone formation, with its shorp projecting rocks jutting out in cvery direction. Ladders were used in nacending this station, varying in length from 16 to 40 feet, and by no other mems could access be obtained from one rock to the succeeding ove above it. I was detained 6 dafs in nltering, strengthening, and constructing these ladders and ramps, which had been previously inade by men detached for the purpose. After testing and proving their stability; the 2 - -inch theodolite was carried up; and it was a day of rejoicing in camp, when the instrument was brought down in snfety after the completion of the observations. Many men were wounded by the sharp rocks, notwithstanding all the precautions taken to prevent injury to their feet by parements of wood over the portions where ladders and ramps were not required.
(8.) Tabutho, SLoisandau, and Konlah, were successively visited, by water. From the latter station I proceeded to Amherst, where the elephnuts of the parly awaited my arrival. The bonts were abandoned nad I marched to Sindong H.S., and from thence to Kaikaman H.S. The atages to them were made on the Goverument trunk rond which has been constructed from Moulmein to Amberst through a dense forest. Three stuging bungalows, 2 rooms in each, have been erected on this road for the convenience of travellers.
(9.) l'roin the 3sth mile pout nnotl:er Government trunk rond has been survejed and marked off ng far as Yel, and is eventually to be extended to Tharoy. A portion of this line has been cleared of jungle, and the preliminary work of removing roots, cutting drains on either side, and raising it by throwing up earth, has beon doue for some miles. It requires bridging and metalling to complete it. In its present atate it can be used only during the dry months. For 6 months last senson gangs of coolies were engaged and emplojed under overseers and sub-overseers, but the progress was unsatisfactory: the men from sickness or from other causes either desertod or ntruck work, and I noticed on my return, after closing nperations, that much progress had not been made. From the auperabundant population of the Madras Presidency thousands of men who cannot obtain a living there emigrate nonually for this Province, where work is plentiful and remunerative. They are very poor and readily take employment at first; but when they have accumulated some money, they bargain for higher wages, nod eventually lake up contract work, which seems to suit them bost, for they can then work or idle as they please.
(10.) 'Ihis high road partly metalled and partly raised and cleared, and the remainder only cleared of forest, was the only one met with during the senson; and with all its imperfections, was of much use to us not only for marching, but for drawing our supplies from Moulmein, which were brought in carts ns far as it was melalled and bridged, and from thence by the elephants. The dâk-men also used it throughout the teason.
(11.) After completing olservations at Kaikamau H.S., I proceeded to Thámindo H.S., which was reached in 5 tedious and trying stages: owing to the low marshy state of the country, detours of 2 aud 3 miles bad to be oconsionally made to get over half or one mile of direct distance to avoid swamps, bogs, or other unsafe ground for men and cattle. Two tidal strenms had to be crossed. Crossing rivers and stroms in the interior of Burmah is something formidable for survoying parties equipped with large and valuable theodolites, tents, and other heavy buggage, which require large aud enfe bonts to ferry them over. At each ferry a small canoe or two are kopt for the convenience of travellers, who are mostly pedestrinns and gencrally carry a manll box containing a suit or two of clothing made of palm leares; the indispensable dah, a knife with a blade 2 feet long and 2 to 3 inches wide; the umbrella : and a large bag, n receptacle for odds and ends, betelnut box, tobacco, cigars, and cooked rice for use when overtaken by hunger. With the box fastened to his back, his knife in its scabbard banging from his shoulder by a loop of rope, the bug suspended by tapo from the other
shoulder, and with the umbrella in hand, the traveller steps into the canoe and feryies himeelf over leaving the boat securely fastened on the other side. In the interior of Burmah ferry-men are never found at their posts owing to the uncertainty and small number of travellers; when required they are to be found in the nearest village. At civil and military stations and other important places, where the influx of travellers and trade is grent, good boats, and an abundant supply of them are readily obtained, and no delay or inconvenience occurs, the men being always on the spot to collect the toll and demand their fare. In the interior however the difficulty of crossing rivers is great, as canoes aro only procurable capable of carrying from 4 to 8 men. A single canne is at all times unsafe; it sways, rolls, and capsizes if the men do not sit still in it. For crossing over the 24 -inch thendolite and the heavg baggage a large number of canoes are required. To collect and lash two and three together to form rafte takes time, and I have been delayed two and even three days in crossing rivers from station to station. In the tidul streams care must be taken to cross them only during ligh waler owing to the quagmire on either bank. Elephants and catte cannot be landed safely at other times withont danger of losing them.
(12.) From Thimindo H.s. I proceeded to Toungboung H.S. from the latter I had to return by the same route to Selúdong II.S. passing near Kuilcomau H.S. 'lhese circuitous routes cannot be avoided in this province, which is devoid of roads; and to go and relurn by those prepared for the party becomes necessary, to save lime, owing to the great delay and expense of cutting new ones. They have been cut and prepared season after senson, and the men have been engaged for a mouth and more in preparing each road.
(13) I reached Selúdong H.S. on the loth day after leaving l'oungboung H.S.: the haze was setting in and I was detained there a few duys; on completing the obscrvations I proceeded to Thebege H.S., which after some days delay from bad wenther, wns completed, and 1 hurried on to Yelridong H.S., which I reached on the 4th March : here I remained until the rains set in and cleared the ntmosphere and euabled me to complete my observations on the $22 n$ d $\lambda$ pril. Owing to the thiclaness of the atmosplere and the daily fires ou the Keoktaga nad Tounghoung rays, these hill statious were completely obscured most of the time 1 occupied the station of Yebudong.
(14.) The rains having set in I closed work and returned to Moulmein on the 1st May; Messrs. Beverley and Hughes came in a week later, and Mr. Clancey arrived a fortaight after me.
(15.) The approximate operations started with the sclection of Konlah H.S., south east of Moulmein, on the island of Belogyún, close on the sea-const. Selúdong H.S. wis next fixed, 50 miles from Moulmein by the rond which skirts along the western bone (sic) of the range stretching from Moulmein to the Siamese boundary. At first the slations were fixed on both sides of this range, keeping the centre and one of the two terminal stations of the figure on it: where the range formed the boundary between Siam and Tenasserim the most easterly stations were placed on it. The approsimate triangulation has been extended from Konlah H.S. to Toungshán H.S., neur Nabúley village 20 miles north of Taroy, by two compound hexagons, a tetragon, and a double polygon. Much difficulty was experienced in the above work, especinlly near the town of Yeh and to the south of it. On referring to the chart accompanying this report it will be noticed that a tetragon has been introduced on the side Phalein (on the const) and Sedong (near the Siamese frontier) where the strip of British territory between the const and frontier is very narrow- 25 to 30 miles only. Here the skill and experience of the surveyor was put to tho test: wedged in as he was between the sea and frontier, and failing in a quadrilateral owing to the Yetagúvdine hill obstructing the diagonal rays, Mr. Beverley who was in charge of the approximate series, estricated himself in a masterly mamer by ndopting the only feasible figure, a tetragon; thus achieving success and continuing the triangulation. To add to the diffeulties of ground, the country between the sides Phalein-Sedong, and Painpuingún-Nakiadong was almost uninlabited, and in the ceutral and eastern portions entirely so.
(16.) Mr. Beverley was engaged in advancing the approximate triangulation, which he conducted with his usual energy and skill notwithstanding the very difficult nature of the country, which was so densely clothed with jungle that he was obliged to clear his own paths guiding the cutters to the proposed station, his camp following him as he advanced. Creeks and tidal strcams evhanced the difficulty of marching and caused considerable delay. Much time was takeu uj in clearing the densely wooded hill tops for want of coolies, who were collected and brought from long distances. At one station, Deobyd, which is situated 5 stages from the nearest village, it occupied him $n$ considerable time clearing a path to the hill and providiag coolies and supplies for clearing, building, and preparing the atation. The native officinl at the large village of Hangan promptly rendered assistance.
(18.) Mr. Beverley has pioneored this party during the whole time I have held charge of it, and to his ability and skill I am greatly indebted for the success atteading the operations in this, as well as on the Bider nud Biláspur Series.
(10.) Mr. J. C. Clancey, Assistant Surveyor 3rd Grade, left Moulmein on tho 4th December 1875, and completed the seloction and preparation of Toungboung H.S. for final obserfations on the 8th January.

The rlelny was unnvoidnble owing to desertions of coolies who were brought from grent distances, and worked most reluctantly, taking advantage of every opportunity of slipping away. He was for days left with 4 to 6 men to clear tough forest trees of great girth. By my deputing Mr. Clancey to select this station on the enstern flank Mr. Beverley was snved n long march of a fortnight's duration in returuing from tho station after its completion to begin his work on the western flank.
(20.) After completing Toungboung H.S. Mr. Clancey took up his legitimate duties, visiting all the stations fiually completed last senaon. He observed hill peaks at Thámindo, Shoisandau, Tabutho, and returned the 7 -inch theodolite to the depot at Moulmein from Kamakabe H.S.; being unable from bad henlth to use it. He constructed all the rectangular pillars and made them over for safe custody to the local officinls. He was unable to superintend persomally the construction of all the rectangular pillars owing to palpitation of the heart. When climbing hills and marching becnme painful he proceeded to Shong-Gheen the nearest station and placed himself under the civil-surgeon until ho was able to resume work.
(21.) Mr. J. O. Hughes joined this party sick on the 23rd October last and being incapacitnted for work obtnined lenre on medical certificato. On the expiry of his leave on the lat February, he was directed to assist Mr. Beverley on the approximate triangulation and personally selected three stations nud visited the 4th which was fixed by Mr. Beverleg. The experience he has gained under Mr. Beverley will be of great use to him in this party, and I have hopes of his being usefully employed the next senson on independent work.
(22.) Moung Moung, a Burman lad edıcated in the Mission and Government Schoolsat Moulmein, bas been now two years with the party as a Burmese and Linglish writer, interpreter, and recorder in the observatory: in the latter copacity he has been of much use for the last two seasons and has done good service.
(23.) Tho native establishment behaved very well during the field senson, but on returning to recess quarters many of the Hindontani carricrs took their discharge finding that they could rendily ob. tain service elsowhere. The instrument bearers have also left, but all vacancies have been filled up and the establishment continues efficient. Men of the Madras Presidency are gradually taling the places of the Hindostamis nad the establishment will eventually be compused of Madras men.
(24.) The country finally trinngulated last senson is hilly throughout: long ranges of hills run. ning north and south, with shorter ranges between them, or low spurs jutting out here and there forming conecting links in the chain, extend throughout the triangulated portion in the ceutre of the Series. Towards the const the hills are low and isolated and as you retreat further from it, they become more elevated. There are more strips of level ground towneds the const than in the interior. The valley of the Atteran is rather extonsive. As the series advances from Moulmein towards Tavoy the population perceptibly diminisbea; villages further and further removed from one another are noticed, and towards Nelúdong and 'I'sebeye single familics having a hut or two occupy the small level spots which they cultivate for a living.
(2.j.) A large trade in boals is carricd on by the people inhabiting the forest. At the base of the hills trees of immense girth ure to be found : the tree is selected, felled, and shoped : the digging and scooping process is then performod, leating the outer aurface about three inches thick. The canoes thus roaghly made are 20,40 and 60 fert in length, and from 4 to 6 feet in width in the centre. They are then dragged by two or more elephants over short pieces of timber 3 to 6 inches in diameter placed on the path; these acting as rollers overcome the resistance offered by the uneven gronnd and the men proceed merrily on, driving the elephants. Jhese sagacious muimals are trained to their work and exert themselves to the utmost in dragging the boat to its destination near a navigable stream. The boat is then finished off and sold. The purchaser adds planks to the sides, widening and raising it to the required height. From this capacious dur-out canoc a large boat is formed capable of being taken by sea to Moulmein and Rangoon for sale in the calm winter mouths. All the village people assist in making the path for dragging the canoe, and cith one uses it when his own bont is rendy for removal to the stronm.
(26.) From information obtained from Mr. Beverley and after consulting the maps of the country in advance, I am of opinion that the series should le continued in a S.S. E. direction from the side Nalintong to Toungshún, curving it slightly so as to have all the stations on the main land till the termination of the British territory at St. Mathews Juland, when as a matter of course some of the numerous islands must be uned. For visiting these islands grood large sen-going boats will be required for the main and detached parties and moust be permanently engnged for the entire field acason.
(27.) I believe $n$ base of verification will be required in Tennaserim. If not tied down to a part:cular locality for the base, I would recommend its being selected at any spot between Morgui and St. Mathewe Island wherever suitable ground can be found.
(28) 'Io Colonel Brown, the Inte Commissioner of the Tenasserim Division, I am in a great measure indebted for the success which has attended my operntions during the entire field senson: ho
provided me with n partefana for myself and for each of my Assistants, bearing his renl and signature, and the document whs promptly attended to by all the native local officials throughout his division. He wns much interested in the extension of the Survey oprations, and impressed on his subordinates that his wishes were to be attended to and lis orders callried out, so that the public service might not suffer delay or incouvenience for want of co-operation on their part : the police were also directed to aid and asgist whenever their services.were needed.

## V. Extract from the Narrative Report-dated 21st September 1876-of Captain M. W. ROGERS, R.E., Officiating Deputy Superintendent 3rd Grade, in charge of the Jodhpur Series.

(2) Owing to the very heavy rains of 1875 , the men of the party who were on leave were much delayed in joining, and the medical and other stores of the party for the field ecason were atopped int Ahmodrbad. However, means were found to enable Mesars. Price and Torrens to take the field on the 1st Octaber, and I proceeded to Deesa, where I inspected the Meteorological Observatory, and laid out a amall triangulation for convecting it and the Telegraph Office with the Karichi Longitudinal Series. I then returned to Abí, and having at length received the necessary men and stores, left for the field on the 23rd October. I marched via Jodhpur and Bikaner to the Bahíwalpur territory, and commenced observations at Mansa H.S. on the 4th December. The double figure remaining to complete the series was Guished on the 3rd Tanuary 1876, at Kaimsir T. S. of the Sutlej Series. Mr. Prunty was then ent to close the stations of the season's work and to finish the connection of sone Revenue Survey points, whilst the main camp marched, via Baháwalpur, to the meridian of $70^{\circ}$, on which a new series, called the "Eastern Sind," was to be commenced. This was reached towards the end of the mouth, and $I$ at once began inspecting the old stations of the Great Indus Series, with a view to fixing on an initial side : unfortunately severnl of these stations had been completely destroyed by the river, and the series will start from a side considerably west of the meridian.
(3.) The country immediately south of the Indus is quite flat and corered with dense tree and grass jungle, and is inundated for four or five months each year; it therefore becanc necensary to resort to ray tracing and tower building in the 20 miles which interrene between the river and the sand hills. This style of work was new to all the menbers of the party, and the progress was in consequence slow. Eight stations were selected, advancing the series 24 miles and reaching the sand hills, on which progress will be more rapid and less expensire. Two towers were built aud the materials for two more collected, and 104 miles of rays cleared; learing but a amall distance to be done.
(4.) The party returned to Abú, viá Jesslmer, traversing the desert north of that tomn, which has hardly ever been visited previously. It differs in no respects from the portions of Bikaner, Jesalmer, and Marwar, visited during the progress of the Jodhpur Series, save in there being fewer villages, owing probably to the comparativo absence of the vegetation which supports so many flocks and herds in those states. The country around the city of Jesalmer itself is rery rocky, and there are no roads for wheeled rehicles, which are unknown in the city. The party reached Mount Ábú on the 26th April, after a long and fatiguing marel through the desert.
(5.) This soason's work finishes the Jodhpur Series, the longer of the two desert series which remain to complete this part of the principfll triangulation of Indin; and it will not be out of place to give a short resumé of the work. It is 311 miles in length and was completed in 3 field sensons and one month, from tho first reconnoissnnce for stations to the last final observed angle: it corers an area of 8,041 aquare miles, besides $4,318 \mathrm{sq}$. miles of secondary triangulation and, with the exception of a small portion south of the river Luni, passes over a sandy country of nearly utter desolation. The country is covered with sand hills of every forn, in all directions, dotted here and there with tufte of conre grass and stunted shrubs. The rillages, fow and far between, are collections of equalid wigwams, situated near apots whero wells, rometimes 200 fect in depth, havo been excnvated with great labor, to be rewarded often with only brackish water. In the whole distance fron the Luni to the Sutlej Series, $2 \overline{50}$ milos, the serices nuct with ouly one place-Phalandi-which could be dignifiod by the name of $a$ town, and four which rankel as decent rillages. All is barren and devolate, but perhaps the southern portion of Bahnwalpur carries off tho palm in this respect. There the series phased over a disfance of 7, mit.- in which there were ouly threo wells of driukable water, and theso wero collected within a apace of 1 nailes.
(6.) In no native state in which I hare worked, has such hearty and effective nssistance been rendered to mo, as by the Political Superintendent of this country. Whilst alluding to this, $I$ also thankfully acknowledge the nssistnnce and kindness which we experienced from the Rulers and Political Agents of Marwar, Bikaner, and Josalmer.
(7.) The total out-turn of work of the season is as follows. Principal observations were trken at 9 primcipal stations forming $n$ double polygon, fixing 5 new principal stations, embracing an area of 311 square miles and extending the series 21 miles along the meridian to its completion and junction with the Sutlej Series. A sccondary series, double throughout, was selected and observed on tho meridinn of $71^{\circ} 15^{\prime}$, extending 142 miles from the Jesnlmer Minor Series to the Karachi Longitudinal Series, and covering an area of 2,526 square miles, fixing 16 new secondary and a large number of intersected points. The obserratory and telegraph office at Deesa were connected with the triangulation by a short series. All this secondary worls was done with a 10 -inch theodolite. The approximate work of the Lastern Sind Series was commenced and extended for 134 miles. 32 stations were selected and 10 built.
(8.) This season, reeing as it did the completion of one series and the commencement of another, cannot be judged by the amount of principal triangulation turned out; but the work done this year will, I trust, make itself felt in the out-turn of next year.
(13) Mr. Price on learing Abú was employed on the Deesa connection, and unfortunately took his party up Jeraj H. S., the result being that both he and all his men were attacked by fever and with difficulty reached Deesa, where they had to remain for a month under medical treatment. He then marehed to the sonthern portiou of the Eastern Sind Series, and took up the approximate work. This he pushed on with his usual vigour and success, and nelected 24 stations and built 8 , extending the series 110 miles. This amount, considering the time lost by sickness, was very creditable to him.
(14.) Mr. Torrens was first employed on the Deesn connection which he completed, except the obserrations on Jeraj, which I directed should be postponed until the end of the season. He then took up the Balmer Minor Series on the meridian of $71^{\circ} 15^{\prime}$ and selected, built, and obserred along it. As it is 142 miles long and double throughout, I consider that Mr. Torrens has done a most creditable senson's work.
(15.) Mr. Prunty accompanied me as obserratory recorder, and on the completion of the series closed 13 stations and observed at several of the auxiliary stations necessary for fixing the Bnhówalpur Rerenue Surrey stations. He then joined me and aided in the ray clearing \&c., on the Eastern Sind Series. During the recess he observed some triangles on Mount Ábú, required to fix the position and height of the barometer which hes been lately placed here by Mr. Chambers, the Meteorological Reporter of Bombay. This is the first season he has tried any triangulation, and I am much pleased with the results.

## VI. Extract from the Narrative Report-dated 31st October 1876-of Captain A. BAIRD, R.E., Assistant Superintendent 1st Grade, in charge of the Tidal and Levelling Party.

(2.) The curves of the tidal diagrams were carefully compared with the different records and in Work performed during recess. one or two cases of small interruptions in the work the curves were interpolated by a reference to the daily reports of the sub-surveyora and the inspection books. The computations at first made were those for correcting the tide-gange clocks to true mean looal time nt each station for each day during the period of performnnces of the clocks. The determinations of the zero (and this in some rases for several diagrans of the self-registering tidegnuge) were calcolated, several other minor computations were made, and then the position of the penoil for alach hour, on every shcet, was corrected to true mean time throughont the entire periol required; and finally the meaturements of every point from the datum were most carefully made (this in duplicate). Some idea of the magnitude of this work may be formed when I state that over 30,000 points were corrected for time and nearly 30,000 final messurements were made in duplicate. Ench finnl measurejuent was taken to the nearest hundredth of a foot, and ns this gave an avernge of 4 figures for ench distance the summations for the final results were heavy indeed.

Fou are aware that the observations at Nawanár tidal station were incomplete; however I have been enabled to eliminate almost perfect ralues for $1 \frac{1}{2}$ complete lunations to the venrest hour in 1874
viz., 9h. 1st May 1874 to 14 th June 1874 (astronomical time) both hours inclusive; also 2 complete lunations to the ncarcast hour in 1875 viz., 13 h . 7th March 1875 to 8 h . 5 th May 1875 , both hours inclusive. I have also tabulated the values for Ohhé tidal station and Hanstal tidal station for tho same period and hare computed the value of menn level of the sea in each case. The following table shows the results of the diflerent computations.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At Okhá Tidal Station | ... | 9.65 | 975 | $+0.1$ | $9 \cdot 90$ | $+0.25$ | $+0.15$ | +10.42. |
| " Fanstal " |  | 16.33 | 16:33 | 00 | 1651 | +0.18 | +0.18 | $+9702$ |
| " Navanair " |  | $\ldots$ | 15'36 | $\cdots$ | 15:50 | ... | $+020$ | $+9 \cdot 176$ |

You will observe that the mean level of the sea for Okhi tidal station as determined by $1 \frac{1}{2}$ luna tions in 1874 is 0.25 foot higher than the real value, and for Hanstal similarly it is 0.18 feet higher. Also for 2 complete lunations in 1875 the mean level of the sea is only 010 feet higher than the proper value for Okhí tidal station while at Hanstal it absolutely agrees. All this bears out what you state in your No. $\frac{4}{71}$ dated 20 th Junuary 1875 viz . "you will see that it is very probable that a serics of tidal observations embracing a period of 2 months from nbout the 7 th March to 7 th of May will give a result very closely coinciding with the mean of the year," and on this account every effort was made to get the observations for that periol, and with success. You will also observe that the difference of mean level of sea at Okhí by $1 \frac{1}{3}$ lunations is 0.5 feet higher thau by 2 lunations: for Hanstal it is 0.18 feet higher, and for Nawanar 0.20 higher-results which alone show the greater accuracy of the observations.
(3.) I determine the M. L. of the sea to bo

> feet
$\begin{aligned} \text { for Nawanár } & =1536 \text { above datum }=9.476 \text { below B.M.A, } \\ \text { " Olchá } & =9.65 \text { nbore datum }=1042 \mathrm{~b} \text { below B.M.A, } \\ \text { " Hanstal } & =16.33 \text { nbove datum }=9.702 \text { below B.M.A, }\end{aligned}$
The leveling operations ahow the following results :
B.M. A, Hunstal, is 041 feet above B.M.A, Nawanár;

B M A, Okhá, is 0.1 a feet higher than B.M. A, Hnustal ;
Olchá B.M.A $=10 \div 2 \downarrow$ above mean level of sea;
Hanstal B.M. $\mathbf{A}=0.151$ below Okhá B.M.A; by leveling;
therefore Hanstal B.M.A $=10.273$ above mean level of sea ly leveling; but Hanstal B.M.A $=9.702$ above mean level of eea by tidal observatione;

Discrepancy $=0.571$
that is mean level of the sea as determined for Manstal tidal station is 0.571 feet bigher than that determined by loveling from the mean level of ser at Okhá.

$$
\begin{aligned}
\text { B.M.A, Nawanár } & =9476 \text { above mean level of seat; } \\
\text { Hanstal B.M.A } & =\underline{1419 \text { above B.M.A, Nawanar by leveling; }} \\
\text { therefore Hanstal B.M.A } & =\overline{9.895} \text { above monn level by leveling; } \\
\text { but Haustal B.M.A } & =9702 \text { above mean level of sea by tidal observation; } \\
\text { therefore discrepancy } & =\overline{0.193}
\end{aligned}
$$

that is mean level of sea for Hanstal station as determined by tidul observations is 0.193 higher than that determined by leveling from Nawanir.
(4.) In para. 4 of your No. ${ }_{143}^{49}$ dated 30th November 1875, being a reply to my letter above quoted

The mean level of aca at Ohhá Tidal you atnte "ono or other of jour tidal atations must be selceted ns Station taken as datum of all leveling oporutions. the datun of your leveling operations, and Okha from its situation nearest the sen is evidentl's the one to be selected for this purpose." The datum for the leveling operations baving thus been sottled I was cumbled to finish the whole of the abstracts of the leveling uperations of the preceding field season.
(5.) In a previous communication I hare stated "you will observo how well the trigonometrical Peculinity of levels of the Rund. heights agree with the real values, but in Cutch they seem to be all less while in Kattywar they are grenter than the values determined by apirit leveling. One very interesting result of the leveling is that the menn value of the Rum between Mallia and Shikirpur is 6.781 above mean level of the sea while between Hanstal and Balumba and Jorga the level of the Rumn is $\mathbf{9} 5 \% 5$. Now the tide at Hanstal frequently in the cold weather rises to 8 feet above menn level and yet the Runn between Mallia nod Shikirpur is perfectly dry from November till March. This shews that there must be $n$ rise in the Runn between the line Mallin-Shihárpur and the hend of the Hanstal creek."
(6.) While these computations were being completed Mr. Rendell, who had been on one month's privilege leave, joined me at Jorya on the 22 nd November. After I

Mr. Rendell nnd Damoder Ramchandra instructed in leveling. had given him a practical insight into the method of leveling as carried out in this department, and had salisfied myself that he was au fait at the work, and that Damoder Ramchandrn the second leveler who was to accompany him was nlso fit to take up the work, I started them off with their party of men to commence from Shikerpur bench-mork, in Cutch-one of the main points connected in the former senson's work.
(7.) The whole of the leveling staves were compared with the standard bar, and observations

## Comparison of atares \&o.

 were made for determiniug the index error of the prismatic compass in each level.(9.) The lines of levels to be executed were as follows. The main line was to be taken right across

Range of the leveling operations. Kattywar from Jorya bench-mark to Wadhwain, the terninus of the B. B. - and C. I. Railway, and thence nlong the railway line to Viramgám, Alhmednbad, and as far beyond as possible. This work I laid down for mysclf and a second Jeveler: of course brauch lines were to be driven right and left of the main line to connect the trigonometrical stations. A loop liue was to be cartied by Mr. Rendell from Shikárpur bench-mark to Addysir both in Cutch; then, crossing the small portion of the Runn to the Chorar and thence into Guzerat, to be taken along the borders of the Rum to Patri terminus, and finally to join up with the main line at Virumgám bench-marls: the small branch line to Khirrighora salt works was also to be leveled over. As 1 was doubtful of the amount of work which Mr. Rendell and Damoder could perform, this being their first season on leveling, and also as I could not calculate low much even 2 experiencel levelers could do with the small new instruments which had lately been supplied, I left the matter of the further work of the second party in abeyance for the time being.
(10.) I worked the rectangular level throughout. The cylindrical level worked by Nursing

The instruments omployed.
Dassis also n first-rate instrument. 'The two small levels lately sent, and to be worked by Mr . IRendell and Damoder, were of a new pattern, by Cooke and Sons of York. Mr. Rondell sags of them "at times during the cold weather they gave a little trouble on account of the inactivity of the bubble." The limiting dislance for the small levels I fised at 6 chains, and Mr. Rendell reports "at this distance in the cold weather 001 of a foot was easily readuble, but in the botter months it was almost impossible to work at even a distance of 4 chuins after 8 oclock in the morning.
(Il.) The main line emanated from Jorya bench-mark, on the main line of the series HansThe main line of lepols. tal tidal station to Okha didal station; thence it was carried to Dhrol ; the line was then taken mong the made-rond to Lialia; thence to Purdhari and Rijkot : at Raijkot the following pakn points were connected- English Church, High School, Rijkumair College. From Rijkot the line was continued along the main road townrds Wadhwín as far as Kurwa, and from this a branch line was taken to Khakhann H. S. ; lanving Kuarwa the line was carried still along the main rond, via Bumanbor to Chotila, and here another branch line was driven to Tarkia IIS. The line then continued to Dheduki, and from thence via Dulin to Muli, whence it ras carried along the main rond to Widhwin Kailway Station. Leaving Wadhwin the line was taken along the perinanent way of the 13. B. amd C.I. IRailway to Virangám, a branoh line being taken from Lilapur bench-mark to connect threo minor iringgulation stations of the Kattywar and Guzerat Surveys, and on to the head of the Nal river. From Viramgim the main line continued to Ahmedabad and thence to Mehmadnbad.
(12.) As a rule the bench-marks were enbedded at 10 miles apart. There were few paka points between Jorya and Raijliot but between Rajkot and Wodbwán

Bench-marks and paka points on the main line. the parapets of the brideres on the main rond were used. A long the railway as a rule $I$ connected one of the hridges every day. 'The bench-marks onbedded along the line of railway were invariably built close to the milway station escept at Virangám, where tho aub-nurveyor made n mintake and built close to the wall of the town. The level of the rail opposile the cenlre of the booking offee at everg rablway station was also determiued to test the accuracy of the railway levels.
(13.) At Ahmedabad the Sabarmati was crossed just abore the site of the old railway bridge Lovele at Ahmednbad. (the new one was under construction). The level of the bed of the river was determined; 'also a palsa point at the Sláhibág was connected, and a berich-mark laid down between the two minarets at the railway stations. The flood line of last year as shewn me was over 40 feet above the bed of the river close to the Sháhibág.
(14.) The line passed over in Kattywar was very undulating but with a gradual rise from Jorya to Rajkot, which is a little over 400 feet above the mean level of the

The genernl appenrance of the country nlong the muin line. sea. 'Ihere are few streams of any consequence, except the Aji river at Pardhari, on this part of the line. From léjkot the rond continued to rise steadily for about 35 miles until the maximum height along the main road was attained at Molri-nana which is $\mathbf{7 1 3}$ fect above menn level of the sea. The country just before this, i.e. from the Bedti river to Bamanbor, was very hilly and ragged and entailed a great deal of extra labour, in that so many more stations per mile were required. Near Bumaubor the country is not much cultivated and I believe that 20 years ago this part of the country was covered with dense forest, and that lions were found there. There is no trace of the forest nove except a stunted tree here and there, but agreat deal of grass is cut and stored here and sent to lájkot. From Molri-nana to Chotila the desceut begins and continues rapidly to Dulia, and from I/ulia to Wadhwán the country is tolerably flat and cotton is greatly cultivated. 'The sudden change in the appearance of the country along our line, from Kattywar where there are few trees of auy lind and hardly nay large ones, to the heavily wooded country near Virnugam and all along to Ahmedabad and Mehmadabad, is most marked. 'Theu again the ground seemed much more highly cultivated as the line passed through the Ahonedabad collectorate, and the demarcating hedgrs of the fields often grow to great heights, the general effect of which contrasts strongly with the open country between Wadhwin and Virawgam.

The mitior triangulation stations connected.
(15.) Some of the minor triangulation stations connected were almost entirely demolished.
(16.) Mr. lendell reports" the country between Shikárpur and Addysir is very low and flat The loop line Shikárpur to Viram- except near Khanmir where it is crossed by a small range of hills gím. ruming in a north-west and south-easterly direction. The soil is sandy and very barren-looking : cotton is grown here and there in small quantities, but by far the greater portion of the land is allowed to remain waste, the soil being so poor that it is not worth cultivatingThere are no wells in this part of the country and the drinking water is collected in tanks during the rainy season." When Mr. Rendell arrived at Addysir he says "I was surprised to leurn that the portion of the Kumn which divides Cutch from the Palanpur State and which 1 had to level over was covered with from one to two feet of water, and as it was necessary that the level of the surface of the hunn should be obtained, $\mathbf{l}$ hat to dovise means to secure this result."
(17.) Mr. Rendell reporta "acordingly I had several long pegs made up for the staves to reat upon: these pegs were driven into the ground up to a certain mark, and
Arrangernents , for getting valuo of level of the Hann. this distance from the marls to the top of the peg being known it was ensy to get the level of the ground below. To isolate the instrument wooden pegs about 5 feet long were used; these were driven into the ground, their tops being flush with the surface of the water ; on these the level stand resled, and I arranged that after I had read the staff the seend leveler should read the bubble : in this way I am glad to say I managed to get over this difficult bit of ground and with very good results. There are no bench-marks in the Runn, but one has been laid down on the border nt the east end nud another at the west end of the line. The lino of levels was taken as straight as possible in order that it may be leveled over at nny future timo. This portion of tho Runn is not flat but concave having a depression of about 2 feet at the centre".
(18) Mr. Rendell continues "having leveled across the Chorar where 2 ljench-marks were laid

Aernes the Chornr to Patri nad Vi. ramghm. down and connected, viz : at Piprala and Sántalpur, I closed my leveling in an easterly direction on Gokatar bench-mark: from this point the line of levels was taken direct to Pátri. A good portion of the ground passed over between Gokatar and 1'htri consists of salt waste, the line heing near the borders of the Rum. The portions under cultivation were of a loose sandy mature. From Pitri to Viramgín the leveling was carried nlong the railway line. The top flanges of the iron girders of all the bridges were fixed as well as the height of the rails at nearly all the level crossings."
(19.) On the completion of the loop line I ins'ructed Mr. Rendell to run a branch line from Saliij s. nad Rarú $\mathcal{H}$. tu Mehmadabad bench-marlc, which I hoped to rench before he compleled the branch line, Kairn S., Kaira Chureh, and the mile pillara alung the main road from Kairn to Mehmad-

Branch line from Snlii S. and Rarú 8. to Melamadabad bench-mark, abad were connected. The Sabarmati and Watrak rivers wero crossed on tho branch line; there was very little water in either at the time, and the levels of the bods of the rivers wore determined.
(20.) On Mr. Roudell's joining mo at Mehmadabad the party with the camp equipage proceeded by rail to Surat.
(21.) On the whole the henlth of the party was good during the last field senson ; in fact I mny Health of the party. say I whe the only one in the party who suffered from ill health, laving had a succession of persistent attacks of fever during the whole of it.
(23.) The loop line emnating from Shikárpur; nud closing at Virangám, formed with the main Aceuracy of tho work. line a circuit of about 400 miles, and the closing difference at Viramgám was 0.536 feet. On account of the greater power and amaller correction for dislevelment of the larger instruments I have considered the ralues of the main line to be absolutely perfect, and the difference 0.536 feet to be generated in the loop line, giving an error 0001 per mile uearly which, considering the instruments they were using and that they had to cross the Rumu when covered with water and that this was their first senson's work, I consider very creditable to Mr. Rendell and his co-leveler Danoder Hamehandin. As an instance of the accuracy of the work which is done by the larger instruments worked in the rigid manner adopted lig this department I may montion the following circumstance. In doing the back section Viramgaim bench-mark to mile post 353 a discrepancy of one foot was discovered between the values of the white and black faces as ubtained by the cylindrical level. I sent off Nursing Dass to commence from the far end, and I siarted from Viramgám bench-mark. On joining up and reducing we cbtaived a result which differed from the previous values by only 0.003 leet, or about 0.0005 feet per mile.
(24.) Mr. Reudell has worked well throughout the entire field season. He reports very favor-

## Personucl of the party.

 ably on Danoder Ramchandra : of Venayek Narayen, Mr. Rendell reports that he worked hard and that he in a quick and accurate recorder nud computer ; aud of Dhondu Venayek ho says that he gives promise of becoming with a little practice a useful and efficient hand. Nursing Dass has as usual worked well throughout the field season, and Bulwant Appaji has also performed his duties in a very satisfactory manner. Sitaram Yeshwant Las wortsed hard but he is by no means a careful recorder nor a correct computer.(25.) I stopped field work in A pril, took the office to Surat, and commenced the reduction of the meteorological observatious taken at the tidal observatories. The graphicul mensurements from the auomometer slicets were all completed.
P.S.- (Ily Major Haig). lly comparison of the principal and minor stations connected, it is Some of the results obtaned by last found that the values of the principal stations as determined trigoecnon's leveling. nometricnlly are from 2.5 feet in defect to 9.2 feet in excess of the values by epirit leveling, and the secondary stations from 2 feet to 27 feet in excess. The average error of the trigonometrically determined height of all the statioms comected during this field weason is 6.8 feet too great. 'The leights of the rails opposite the booking offices at 15 railway stations have been determined this senson, and the values as given by the railway nuthorities are from 4.8 feet to 8.8 feet tuo great, or an arerage of +6.9 feet-errors which are not high considering the inethod of procedure by which they hare been obtained as compared with the rigidly accurate system of this Surrey.
VII. Extract from the Narrative Report-dated 6th October 1876-of Captain W. M. CAMPBELL, R.E., Officiating Deputy Superintendent 2nd Grade. in charge of the Astronomical Party No. 2.
(1.) My last report, no far na it referred to the electrolongitude operations, wns chiefly a description of the alterations then being carried out in the equipment, which at the date of the report were not quite complete. I shall commence this nariative by remarks on the completion and results of these changes.
(2.) The experience of the past season's operations proves, that the old failings of traneit tele-

Transit Teleacopo No. 2. scope No. 2 have been entircly removed by the repaira which were executed by Mr. Dorleret, Mathemntical Inatrument Maker to the Madras Government, and its line of collimation is now quite as trusto orthy ns that of the sister instrument. It is still inferior to the latter as regards the Bohnenberger eye piece, which is of too low a power.
(3.) The alterations of the chronographs were juat completed in time for the opening of the field

> Chronographs : new arrangements. sesson mud have, I ant glad to nay, proved entircly successful. The saring of time, trobble, and morry by the new ne compared with the original arrangements can only be nppreciated by one who, like myself, has gone through a large amount of work with both. The loss of a sigual now, owing to any defect in the local arrangemente, is a thing almost unknown, and to effect this a minimum of attention is required. Under the original arrangement,

I think I am within the mark in anying that, with constant trouble, it was very difficult to obtain a satislictory record of nine-tenths of the work done.
(4.) While on this subject 1 may mention that the early expericuce of the field season led to a

Modification of nery arrangement. modification and simplification of the arrangement with which we began. Under my first arrangement each pen magnet was worked, under all circumstances, by a relny of the kind used in the Telegraph Department, four of which I had been able to procure ou lonn through the kindness of the Director General of Telegraphs. The object of this was to obtain as much uniformity as possible, nud to sulject all signals, local and line, to as ucarly as possible the same conditions as regarded retardation; but on the other hand there was some loss in simplicity. The relays also, being intended for recording signals received through a long wire, were ill adapted for local work with small battery power, and we found that when called on to perform both duties alternately, they required a good deal of attention-the only point ou which the electric parts of the chronograph gave any tronble.
(5.) The modification referred to above was carried out after the completion of the first measurement, and consisted of discarding the relays for all local work, ond using then only for transmilting and receiving line signals. The pen mingnets nre now placed locally in simple circuits passing through clock or observer's key at pleasure, and worked by weak batteries. The line signals are received through a relny, which works oither pen by its local battery. 'lhe signals transmitted through the line are sent by "translation," i.e a local circuit passes through the "translating" relay which works the line circuit. The object of this was to keep local and line circuits quite distinct, in the case of the clock or observer recording through both on the local and the distant chronographs respertirely; because when there is any communication between these circuits grent trouble is sure to be caused in order to maintain the proper balnuce of currents. A nother advantage is that when the line sigual is sent by translation the conditions at the distant station have no effect on the local work, so that the observer at the former may receive the signals sent, or not-put the line wire to earth, or not- $\&$ c., as convenient to himself, without in any way nffecting the other station.
(6.) The result of the new arrangement is that when a signal is recorded on both chronographs

## Retardation affecting signals.

 the record on the distant one is affected by the reiardution of the line and of two relaya, as compared with the local record; whereas when the relays were nlways used in the pen circuits, this diference between the two signals was due to the line retardation alone; and on this account the change may be looked upon as olijectionable.(7.) I'lie best way of comparing the accuracy of the worls under the different conditions is,

Accuracy of results compured. I think, by taking an arernge probable error of tho clock comparisons obtained with the several arrangements. I have carried this out with regard to (1) the original arrangements which existed during the season 1872-73: (2) and (3) my first arrangement, with which we measured one are last sonson, nsing-(2) simple cloek comparisons, -(3) comparison by longitude aignals (see para 17): (4) the modification indroduced after that are and used for the rest of the season. The following are the results, each $p$. $e$. being obtained from 20 individual values of the clock difference, by simple comprison, or hy longitude signals:

Mean of 10 values of $p$. $e$. of clock compurison under system (1) $= \pm^{*} 00164$


From this it would appear that the accurney of our latest method is precisely the same as of the original arrangements used in sensou 1872-73, which is almost beyoud my expectation, (vide parn. 19 of last report), while that obtained by the arrangement with which we began work last seavon is decidedly inferior. I'las last result I attribute partly to our comparative inexperience gemerally, and to the fuct that we were trying to uso our relays with too small latteries, whence uncertainty of action resulted. These figures indicate also nu equality of precision between the methods of direct elocls comparisons and of lungitude signals. The melhod of "longitude sigmals" here referred to is fully described in para. 17.
(8.) I referred to tho collitatars in my last report as an improvement on those which were

## Collimntors.

 used in our work of season 187923 , nul they cerininly proved very complete nud peifect instruments. It is dificuit to judge of the degree of efficiency of the arrangement. for ensuring stability of the axial direction, to which I mlluded, withont placing the now collimntors alongside of the old ones and actually comparing their behaviour under similar circumstances, but the new instruments were certainly very slable. We have not had occasion to rely on this stability in order to combine the observations for deviation on different nights, as I thought might be done, becouse we hit on a method of effecting this much more certainly by mana of star observations, as I shall explain in the proper plate.(9) The details of our collimation observations are somewhat novel, and as we found the Method of using the Collimators. method most conveuient and trustworthy I shall explain it. One collimator, always placed to the north of the transit teleacope and called " $N$ ", is provided with a fised cross wire, thus $x$. 'The other, to the south and called " $S$ ", possesses a similar fixed $x$ and nlso a moveable micrometer vertical wire. The $\times$ of $N$ was always placed as nearly as possible in the meridinn, and that of S a little to one side, so that the appearance in the field of 8 was as shown in dingram, AB being the micrometer wire. With AB, rendinge were taken of $N$ and $S$, and the difference $c$ converted into terms of the trausit telescope micrometer. Then with the transit telescope ench of the crosses N S were observed and the difference $e$ applied to the reading of $\mathbf{S}$ as a correction. The advantage of the method is that all the observations are exactly similar, viz: the
 intersection of a cross by a vertical mire. 'I'he disadvantages are, the necessity for knowing nccurately the relation between the micrometer screws of the transit telescope and of S collimator, and the small computation involved in the process; weither of which we found caused nuy inconvenience.
(10.) I shall now proceed to the narrative of last sensou's operations, in which Captain Henviside Narrativo of field eeason. was associated with me. The propored programme inclucled the measurement of the following ares, named in the order which we had decided on ne the best as regnrded

Proposed Programme. the prospects of clear wenther and tho comvenience of my meeting with Captain Henviside, who had to join me from Dehra Dún, viz: Hyderabad-Bombny; Bellnry-Bombay; Hyderabad-licllayy; Madras-Hydernbad; Madras-Bellary; Bangalore-Bellary; Bellary-Mangalore, or Madras-Bangalore. Of these the first six were successfully completed, but time did not suffice for the list.
(11.) Captain Heaviside expected to be nble to reach Hyderabad about the beginning of December, nud I timed my departure from Bangalore accordingly. On 19th November Mr. Keelen started with all the equipmeut and establishment by road to Gooty ( $16 \overline{0}$ miles) whence he proceeded by rail

Start from Bingalore. to Ilyderabnd, arriving there on December 5th. Mr. Bond took the field carlier-on 26th October-for the purpose of finishing some triangulation which he had been umable to complete during the preceding field season, with orders to proceed afterwards to Bellary to select and prepare the longitude station at that place, as nlao to connect it with the principal triangulation. On 23 rd November 1 left Bangalore and proceeded to Madras, where I had some arrangements to make with Mr. Pogson, after which I went on to Hyderabad, arriving there on 29 th November.
(12.) Hyderabad had alrays been spoken of generally as the station to be observed at, but nothing could be definitely settled until I reached the place, and
Bolarum : choice and preparation of station. had an opportunity of deciding which of the three telegraph offices mailable in the immediate neighborlood, viz: Hyderabnd, Sccunderabad, and Bolnrum, would prove the most convenient for our purpose. A rery slight reconnaisunce sufficed to decide me in favor of the last named station, which stands on high open ground, with ndroirable sites for an observatory within a few yards, capable of connection with the principal triangulation by a single triangle, using two stations of the Hyderabad Minor Series which was executed by Lieuleunut (now Captain) Rogers with a 24 -iuch theodolite as an offahoot from the Grent Arc. The best site for the station was within the compound of the D. P. W. Office where the Officiating Superinteuding Engineor, Major Swetenham, RE., kindly allowed me to build the necessary pillars and gnve me the use of out-houses close by, which were very conveniently placed for the accommodation of the clock and chronograpl. He was also most obliging in obtaining masons and assisting me in various ways.
(13.) Captain Heariside arrired on 7th December on which date, although the pillars were not

Captain Heaviside's artival.
quite complete, there wns abundance of employment for him in taking over charge of his party. On the 9th the pillars being rendy we bogav eelting up the instruments, nad from that day to 281 h inclusise we were busily employedin practice observations and in settling the details for actual work, four nights' observations for personal equation being included.
(14.) On 29th December Captain Heaviside diemantled, and on 31st proceeded to Bombay,

He proceerls to Bombay.

Meazurewent Bolarum-Dombny.
都
that day to the 21 st inclusire, which completed the measurement.
(15.) The programme followed was of two kinds : we began on the old method of senson 1872.73 having the line only for certain short periods and using it exclusively for comparing clocks, while during the intervals each took transits with his own clock. I also npplied for and on several nights obtained

Programine followed: use of line obtnined for long periode. the use of the line for a period of 3 to 4 hours embracing the whole of our programme, on which occasions one clock was used for transits at both stations, changing the clocks in the middle of ench night; comparison of clocks being also made at certain interrals. When working on this aystem a comparison of clocke is not necessary, but it was always taken for two reasons: (1) to obtain a measure of their relative rate, which is useful in determining the absolute rate of each; nod (2) becanse a comparison being obtained it becomes possible to combine trausits by each observer with his own clock, in the event of any hitch in the transmission of clock signals for transits, (a case which occurred on at least one occasion) so that such failure does not involve the loss of the night's work.
(10.) In making my preparations for the operatious of the field season, when I mas only able to reckon on having the use of the wires at certain short period, ! introduced a change in the method of clock-comparison which had been followed by Captain Herschel and myself in 1872-73, viz: recordClocks. ing the two clocks alongside of each other for about a minute at a time, which I now call a "simple comparison". My objcction to this method was, that unless there is a very great difference between the clock rates (which is inconvenient for other rensons) the record of auch a comparison shows no appreciable chauge, and consequently in transcribing it one reads the same fraction of a secoud over and over again, which is not conducive to accuracy. I bad also in view the prospect of working through cables at some future time, for which purpose clock signals at one second apart would not be suitahle, being too rapid, and I wished to introduce and test a system adhpted for cable work. Lastly I was influenced by the desire to avoid passing strong currents through the clocks, fearing consequent injury to their break-circuit arrangenents, which would be troublesome to repair. On this head I believe my fears were esaggerated, and moreover the use of a translating relay which we adopted soon afterwards, as already noticed, obviates the necessity of passing any but very weak currents through the clocks.
(17.) The method adopted I call "comparison by longitude signals",* and it is carried out to afford two simultaneous signals, one for record un the local chronograph alongside the locnl clock, and the other for transmission along the line aud record on the distant chronograph beside the distant clock. It is obvious that each pair of signals so recorded affords a value of the clock difference, from which the retardation was eliminated by the exclange of siguals in alternate directions; and any want of synchronism between the two signals generated by a ley was guarded against by reversing its connection with the two circuits. This system answered perfectly in practice, but it entailed more

Disadvantages. troublesome commutator arrangements, and the record takes much more time to transcribe than that of a simple clock comparison. My object in adopting it was to a great extent satisfied by its puccessful morking, as wo havo now a proved syatem of clock comparison to fall back upon in case of finding clock siguals unsuitable for transmission to the distant station. When the line was obtained for long periods, the old method of simple clock comparisons was resumed, and $I$ do not think it advisable to depart from it again when working with land lines.
(18.) At the beginning of the senson we started with somewhat complicated commatators, to

## Commutators simplificd.

 nllow of all the differnt combinations: these were very greatly simplified by the abnadonment of the relnys for local work, and the double keys for longitude signals, with great adrautage in reducing the chances of mistakes in manipulation.(19.) On completion of the Bolarum-Bombay mensurement, I proceeded at once to Bellary and

Mensurement Bellary-Bombay.

## Personal equation at Bombay.

 turn from Bombay we completed the mensurement by obscrvations on 9th and 10th, losing the 8th owing to a fault on the line.[^6]Captnin Heariside now rent to Bolarum, and the mensurement Bolarum-Bellary occupied six

Bolnrum-Bellary: Madras-Bellars : Personnl equation at Madras. Bunga-lore-Bollary. Personal equation at Bangalore and close of acason. nights, 19th to 24th February inclusive. I then proceeded to Madras while Captain Heaviside remnined at Bolarum, and we completed the arc Madras-Bolarum on March 12th, being delayed for some days by clouly weather. Captain Heaviside then moved to Bellary, taking ndvantage of the opportunity for visiting Madias in order to obtain another value of personal equation. Fimishing the arc Madras- Bellary on 2nd April I proceeded to Bangalore and we completed the mensurement Bangalore-Bellary on $\lambda$ pril 18th. The observations on the two last ares were much obstructed by clouds. The season being too far advauced to permit of our attempting the arc BellaryMangalore, Captain Heaviside joined me at Bangalore, and we took a final determination of personal equation with both telescopes before closing the season's observations on April 23rd.
(20.) I'broughout the measurement of the last five arcs we obtained the use of the line wire

Uac of line for long periods always obtuined. during the whole of our programme each night, an arrangement vasily superior to the use of short concessions, in many ways:(1) the dealings with the telegraph oflicers are simpler, our connection being made once for all: (9) we were able to work by a sidereal time programme, so that exactly the anme stars were used night after night-a very great object both as regards trouble at the time and in reductions afterwards : (3) the general reductions of the work will not be nearly so heavy; and, lastly, we have every reason to expect that the results will be superior.
(21.) We followed the same programme throughout viz: comparison of clocks; transits for

## Nightly programme.

 forty minutes at each station using the same stars, (to allow of which the transit observation at west station began and ended later than those at east station by a time equal to the difference of longitude); a second clock comparison; transits again for forty minutes; and lastly a third set of clock comparisons. Each observer took level and collimation observations at convenient opportunities, at least two of the former and one of the latter being. obtained each night. We used only 15 out of the 25 wires for transits. For the first set of transits E. clock, and during the second W. clock, was used at both stations. In the middle of each group of transits, and also in each set of clock comparisons, the duties of the chronograph pens were exchanged, thus reversing the sign of the pen equation, and eliminuting residual error after the application of its accepted value as a correction to the record. The transit telescopes were used equally in the positions I.P.E., I.P.W. at each station, the reversal being effected with great ease, often with hardly appreciable disturbance, by means of a small wooden frume on which the telescope was bodily lifted by four men. Each observer retained the same equipment throughout the season.(22.) As regards azimuth observations, we made a point of obtaining if possible a pair of close

Observations for nzimuth. polar stars, one above and one beluw the pole, every night; and the nights on which wo failed in doing so were comparatively few. I hare now to notice the method of supplementing these observations, to which 1 referred when speaking of the collimators; a method which so far as 1 am nware is novel, and according to our experience very valuable.
(23.) It is often difficult to obtain a pair of well fixed circumpolar stars which occur at times Circumpolar atars. convenient for obsorvation, and moreover in these low latitudes there is always a great chnnce of losing the lover transit, particularly when the star used is a small one. For the first part of the season $\delta$ Ursæ Minoris and 51 Cephei answered our purpose admirably, but their transits became too carly for convenience in February. Then there was a short interval during which there were no good stars conveniently available, after which we adopted Polaris sub polo, and one of Mr. Pogson's regular azimutlal stars (the data for which be supplied me rith), for the rest of the season. Thislatter star is No. 99 of the Rndeliffe Polar List and 4339 B.A.C.
(24.) The supplewentary stars which I call "comparative azimuth stars," are of about $10^{\circ}$ N.P.D.,

Use of comparative azimuth stare. chosen simply for convenience of time of transit, and observed every night. The exact places of these stars were not wanted, but only an approximation close enough to permit of their change in R.A. from day to day being computed, for which purpose the places of the B.A. Catalogue (from which they were chosen) are amply sufficient. Now it is, evident that if such a star is observed every night (the observations being corrected for change in R.A.) and an absolute determination of deviation is obtained on any one night by well fixed stars, the devintion can be deduced therefrom for each night. This is an extreme case which never occurred, but we have a few instances of nights ou which no absolute determination of deviation was obtained, when it is deduced by means of these comparative stars. After their introduction (February 9 and 10) we made a habit of observing at least two of theso stars every night at nearly equal intervals of time from each other and from the circumpolar stare, and these observations have been given their own weightin deducing the mean
deviation for each night. Thus it appears that our deriation correction for each night obtained by the above method, depends generally on three or more observations of polar stars taken throughout the night.
(25.) Our determination of personal equation should be as reliable as such an observation is

Parsonal equation. capable of being. As already noted it depends on the observations of nine nights-two with each instrument before the commencement of the operations; one night with one telescope, and two with the olher, during the sexson; and a night with each at the close of the work. On every occasion the method of sharing transits at the same instrument was followed; that is to say, one observer recorded the transit of a star over the first (generally ten) wires and the other taking his place observed the last ten or twelve wires. The observer who finished one transit always began the next. 'I'wenty such transits were observed on each niglit, giving a value of the equation with a probable error of about $\pm 0 \% 01$; the equation itself being about +0.10 , to be applied to Captain Heaviside's observations to reduce to mine.
(26.) In the process of transcribing the eluronograph record there is probably just as marked a

Personal equation in tranecribing chronographic record. personal equation between individuals ns obtains in the observations themselves. 'Ihis has never been determined, but its effect has been eliminated by taking care that the work of both stations for any one niglat has always been transcribed by the same person-Captain Heaviside or myself. The same precaution was adopted with regard to the clock compurisons.
(27.) The recess work, including the transcription of the chronograph records and the reductions, is very heary, so much so that it will be some time yet before we arrive at any fiual results. The work is however in a very forward

## Recess work.

 state, the whole being brought up nearly equally; and so far as I an form an opinion, the results promise to be sntisfactory.(28.) I have already remarlsed, that Mr. Bond began the field season by finishing some triangulation on which he had been employed under Major Branfill's orders during season 1874-75. The necessity for completion was
Mr. Bond's worts during season. urgent, in order that the whole might be made available for use by Captain Strahan, R.E., in the topographical survey operations which he was then about to commence. I am glad to say that Mr. Bond succeeded in the face of a good many difficultics, arising from weather, an inferior staff of signalIers, and the prevalence of cholera in the neighborhood, and banded over all his records to Captain Strahan, by whom I am informed that the quality of the work is excelleni. Mr. Bond's work at Bellary proved somewhat difficult, owing to the unfnvorable position of the telegraph office, which, combined with the want of good signallers, made the fixing of the longitude station troublesome. He had not quite completed it when I was obliged to send him to Bombay on 13th January to assist Captain Heaviside, in place of Mr. Keclan who was sick. Mr. Bond accompanied Captain Heaviside to Bolarum, and took the neccasary observations for fixing the station there, and afterwards completed the work at Bellary. I was disappointed in the progress of his work at Bellary, and making all allowance for difficulties I cannot but think that Mr. Bond's operations there were wanting in judgment

## Babu Hareahai.

 and energy. I had a most efficient recorder throughout the season in my native writer Babu Harsahai.(29.) In conclusion of this report, I have great pleasure in recording my gratitude to the

## Porsonal acknowledgements.

 officials of tho Telegraph Department for the invariable courtesy with which our wishes were met and acceded to whenever possible. I never applied for assistance of any kind wichout mecting with a ready and cheartul response, though I fear that our operations must havo caused considerable trouble in the different telegraph offices through which we worked, in mmey cases entuiling extra work on telegraph masters and signallers.To Mr. Pogson, Goverument Astronomer at Madras, I had frequent ocension to apply for assistance, and I am deeply sensible of the kindness with which he always met wy wishes. I fear our work at the Madras Observatory cannot hnve failed to prove an annoyance to him at times, involving as it did the encampment of my amall native establishment in his compound. Finally 1 would thank my colleague Captain Heaviside, R.E., for hearty nad zealous 00-0peration throughout the season.
VIII. Extract from the Narrative Report—dated 5th October 1876-of Captain W. J. HEAVISIDE, R.E., Deputy Superintendent 3rd Grade, in charge of the Astronomical Party No. 1.
(1.) Having received orders to take charge of No. 1 Extra Party and commence electro-telegraphio longitude operations in association with Captain Campbell, R.E., I left Head Quarters at Dehra Dún on the 17 th November and proceeded to Bombay, which is one of the places it was intended to connect.

The Colábn Observatory being a fixed trigonometrical station, and connected by wire with Bombny, from which it is about 3 miles distnat, its grounds were fixed upon as a suitable place for our ubservations: it had moreover the advantage of being the place where the pendulum experiments were carried out in 1873 and I had then found Mr. C. Chambers, the Supcrinteudent of the Observatory, so rendy to give me every nssistance that I felt confident of the cordial co-operation he rendered me in this case and for which my best thanks are duc to him.
(2.) Cuptain Campbell had communicated to mo the requiremente necessary in the way of space and shelter for the instruments: these are simply an open space for the transit tent, in a position which could be connected by triangulation with trigonometrical pointe, with an uninterrupted view of the henvens to within $8^{\circ}$ or $10^{\circ}$ of the horizon north and south, and a room about 10 feet square for the clock and chronograph, conveniently near the transit tent. There were several small buildings on the obscrvatory premises that Mr. Chambers was willing to place at my disposal, and the site eventually selected was 76.6 feet north-east of the trigonometrical station of the Bombay Island Survey. While in Bombay I also visited the telegraph officials and arranged with them about the supply of batteries and the use of the line $\mathbb{C}$.
(3.) I left Bombay for Secunderabnd on the 4th of December arriving there on the evening of the bth, and on the 7 th I moved up to Bolarum where Captain Campbell had selected the station. $\Lambda$ day or two later the two transit telescopes were set up close to each other, and the two chronographe with the clectrical arrangements were placed in two stalls of a stable which had been prepared to receive them, about ten jards from the transit tent. Between this date and the 28 th, $I$ took over clange of the parly from Captain Campbell, and we practised work, interchanging signals, taking transits for personal equation, determining values of the micrometer screws, \&c., and in general practice in the manipulation of the instruments which were new to me. I am much indebted to Captain Campbell for the iustruction he gave me regarding the various instruments and their working.
(4.) Mr. Keelan left Bolarum on the 20th December to build pillars and to prepare the station at Coliba, and as the Christmas holitays were impending I gave him a letter to Major Merewether, R.E., Executive Engineer Bombur Defences, who kindly sent a contractor to undertake the work and subsequently checked the contractor's bill for one. The instruments and camp equipage were sent off to Bombay on the 30th of December and I followed the next day.
(5.) The equipment did not reach Bombay until the 4 th of Jonnary but the interval of threo days was fully occupied in making final arrangements regarding the use of the line, and batteries, and eeeing to the various connections. There are two telegraph lines between Colaba and Bombay : one from the observatory is connected with the clock and time-ball in the Fort, the clock there being regulated by the observatory clock; the other wire leads from the Colába Lighthouse to the Head Telegraph Office in Bombay, and is used to signal the arrival of stemners and other matters connected with the shipping. It is the latter wire that was emploged for our work, a switch being placed in the clock room through abich the signals from the lighthouses to the telegraph office passed, with a key which enabled me to throw the lighthouse out of cirenit and bring our local wire into circuit. At the head office the wire from Colába was connected direct with tho wire to Bolarum and the line Folarum-Bombay was then worked by a battery at each end controlled by Captain Campbell and myself. The battery I had nt Colaba consisted of 4.3 Menotti cells, $n$ strength recommended by the telegraph officials, but after our first night's experience we found 20 cells amply sufficient for our purpose. The earth wire at Colaba led to $n$ good copper plate which was sunk near a well close by and kept constantly moist. In carrying out these arrangements we are much indebted to Mr. C. E. Pitman, Assistant Superintendent of Telegraphs, in charge of the Bombay office, whose courtcons assistance, rendered often at considerable personal inconvenience, tended in no small degree to the smoothness with which our work was carried on.
(6.) Kegular work was commenced on the night of the 10th January, and it was rather diaguieting after all our practice to fril ns we did. 'I'his failuro was due partly to our working with a line battery too strong for the relays which were adjusted for the local batteries, and partly to a fault in tho line; but after this first night wo were singularly free from even small irregularities of action. The distance Bolarum-Bumbay is almost exactly 500 miles and the line was worked from Coléba with 15
cells. During the frogress of the worls on this are we obtained the nse of the wire on two or three uights for threc consecutive hours instead of for periods of a quarter of an hour at intervals of one and a half hours, and this of course considerably facilitated the operations.
(7.) Mr. Kcelan, who had been suffering for some time from inflammation of the eyes, was obliged to take sick leave at Colabn from the 13 th to the 31 st Janunry, and it seemed probable that the work would have to be atopped for two or three days until Mr. Bond's arrival from Bellary, but Mr. Chambers kindly lent me the services of his head-writer, by name Huri, who was accustomed to transit work and whom I found an execllent recorder.
(8.) The are Bolarum-Bombay was finished on the 21 st of January, and while Captain Campbell was moving to Bellary I employed myself in re-determining the wito intervals of the trausit instrument by transit of circumpolar stars, the last determination haviug been made in 1872, and in checking the connection of the longitude station with the trigonometrical point.
(9) The arc Bellary-Bombay 526 miles in leugth was worked from Colaba with 20 cells and was completed on the l0th of February. I then moved to Bularum commencing work there on the 19th of Febringy. The are Bolarum- Bellary was finished on the 2 tht of February and the are Madras-Bolarum on the 12 th of March, While the equipment was being moved to Bellary $I$ went down to Madras to take some observations fir personal equation with Captain Canpbell, and I returned to Bellary on the 20th. Ilie are Miedras-Bellary was completed on the 2nd of April; and BangaloreBellary on the 18th.

On the 20th I left for Bangalore, where Captriu Campocll and I took further observations with both transit telescopes for per'sonal equation, and this completed our field season.
(10.) 'Ihe early part of the jear was very favorable for star observations, the nighte being singularly free from clouds up to the middle of March. Subsequent to that date we were a good deal troubled by cloudy night, and the weather at Bellary in A pril had much the character of an incipient monsoon.
(11.) Captain Campbell in his report has entered fully into the system he adopted to carry out the work and the arrangements of the cummutator and bateries connected therewith, so that there is but littlo left for me to relate on this subject. I think howevar he has hardly done himself full justice in detailing the improvements he has eflected, in various waya, but more especially in the chronograph records. By removing the styles which were formerly employed to record the signals by the action of currents of statical clectricity on chemically prepared paper, and using in their places pens which draw continnous ink lines on ordinary paper, while the batteries (Menoti's) are in circuit, and which are jerked outwards whenever the circuit is broken, he las not only got rid of the necessity for preparing the paper chemically and for kecping it of a cerlitin derree of dampness-which, it appears, proved such a fertile source of annoyance in the season of 1572.73 -but has also cffected a great improvement in the distinctness of the recorded signals and in the ease with which they can in consequenco be read off. It is very ovident too that by gelling rid of the Bunsen battery, which is spoken of by Captain Herselel in his report of 1872.73 as "perhaps the most troublesome and provoking source of failure", and by changing the relays formerly in use for others of an improved pattern, Captain Camplell bas very much inereased the certainty of record of all signalls, without, th would appear', any detraction on the score of accuracy. In fact where there are so many sources from which hitches may arise, it more than surprised me to find things work so smoothy that throughout the seasou it has been quite the exception to lose a signal of any kind ; and where losses have occurred, these have almost invariably been due, with me, to the entire stopping or to the very irregular rate of the chronograph, the performances of which, though good on the whole, are occasionally very puzaling.
(12.) In observing tratusits and determining collimation I liave of course adopted the same systems ns Captain Camphell describes in paras. 21 and 0 of his report; nud in oll other respects his systems of procedure have been followed by me. The dislevelment of the tronsit instrument has been invariably read by the micrometer head from the reflection of the wires in a trough of mercury.
(13.) During the field season Mr. Keelan was chiefly employed in the observatory; keeping a record of tie collimation and level observatious, noting the stars observed and the number of wires they were observed orer, and warning me of the setting and times of transit of the stars. He prepared the station at Colábn for the observations and connected it with the trigonometrical station. He has work. ed both in the field and during the recess with the care and industry that I have invarinbly found him bestow on his work, and his knowledge of delicate instrumeuls has on several occasions proved of assiat. ance to me.

## IX. Extract from the Narrative Report-dated 23rd November 1876-of Captain H. R. THOILLIER, R.E., Officiating Deputy Superintendent 1st Grade, late in charge of the Kumaun and Garhwal Party.

The establishment of the Kumann and Garhwil Survey Party, up to the time of my last report, had been broken up into two detachments, one operating in the ligher anowy ranges of Kuman and Garhwíl and the other in the Dehra Din. The area that remained to be surveged in the former districts was about 1,200 equare miles only, but under the directions of the Superintendent, the completion of these operutions which are necessarily of a costly nature, was suspended. Tho party therefore has been concentrated in the surveys of the Dehra Dún and Jaunsár Báwar.
(2.) The strength of the party, which consisted in 1874-75 of three Deputy and Assistant Superintendents with ten Surveyors and Assistant Surreyors, was reduced for the senson under review to tro Deputy and Assistant Superintendents, and seven Surveyors and Assistant Surveyors ; one of the latter of whom was on leare from 15th October 1875 to 15 th April 1876.
(3.) The area remaining to be surveyed in the Dún being small, the party was divided into two Distribution of Party. detachments, one consisting of Messrs. W. Told, II. Todd and I. Pocock with six Native Surveyors to complete the work in the Dún, and the other consisting of Messrs. Rynll, Litchfield and Warwich with one Native Surveyor to commence the detail survey of Jaunsir Bawar, on the scale of 2 inches to a mile, the triangulation of which had been done during senson 1674.75. The field oporations of both detachments were commenced nbout 20th October.
(4.) During the season an area of 562 square miles was topographically surreyed: of this 430

Out-turn of work. square miles was on the scale of 2 inches to $n$ mile, 124 вquare miles on the 4 -inch scale, and 8 square miles on the 12 -inch scale. This nren comprises the completion of the non-forest tract of the. Dehra Dún district, and also of that portion of Jaunsár Báwar which I mas directed to survey. The index maps attached to this report, on comparison with the maps attached to my preceding report, show clearly the extent of work completed by this party; the uncolored portions represeuting the forest tracts which have been surveyed by the liorest Survey Department under Captain Bailey, R. L, pari passu with our operations.
(5.) At the end of February, when in Jannsir, I was directed by the Superintendent to return to Head Quarters at Delira for the purpose of relieving Mr. Cole (who was procecding on furlough) of the charge of the Drawing nud Photozincogrnphic Branches of the Head Quarters' Office, and also in order to take charge of the Superintendent's office when Colouel Wallser went on furlough. I therefore at that time directed Mr . Kgall to assume the full charge of the detachnent worling in Jaunsir Bawar. On Colonel Walker's departure, I wos appointed to officinto as Superintendent and vacated the clarge of the Kumanan and Garlawil Party on the the April.
(6.) As Mr. Ryall wns engaged on the Jaunsár survey from its commencement, and took charge of the party during the field season, he thus had the opportunity of carcfully inspecting and examining the wholo of the work there: I leare to him therefore, the duty of reporting on this portion of the survey, and on the amount and quality of the rork performed by each of the assistants. I must however stnte that I carefully examined Mr. Ryall's work in the Amláwa valleg nod found it very accurnte and good.
(7.) The whole of the topography has been done with the greatest enre. Where the ground

## . Topograpby in the Dán.

 admitted of it, check traverse lines were run by the European Assistants, to test the accuracy of the work executed by the Native Surveyors: 54 linear uiles were traversed for this object. The hill sketching by the assistants was examined by myself and the work was found to be accurately delinented.(8.) Or tho nssistants employed in tho Dún survey, Mr. Pocock completed the work allotted to hiun on 23 rd Vebrunry and Mr. II. Todd on 23 rd March, when they were directed to join Mr. Kyall in Jaunsír. Mr. Pocock not having lind much experience in hill sketching, and the scale he was einployed on being new to him, his progress was slow, but his work accurate. The native surregors finished their work on the $t$-inch acale, by the beginning of March, and na they were not aufliciently trained for hill aurveying without a chain, they were utilized in completing the survey of the station and environs of Dehra, on the scale of 12 inches to a mile, a work which had been previously commenced for the object of teaching them plane-tabling.
(9.) Numerous heights have been fixed by aneroid barometers throughout the seneon's work, lIeighta. and in addition it was found necessary to determine 38 more heights trigoumetrically, chicfly from previously fised atations.
(10.) The work was principally corvied on in tho Eastern Dún, where the character of the Remarts on the country. country as regards varied descriptions of ground was similnt to that met with and reported on in the previous year, and was equally tedious and difticult to survey, 'I'le Eastern Dún is less cut up by deep ravines than the Western. In the latter, the slopes of the northern spurs extencling towards its main drainage channel are much greater, and consequently more water worn; whereas the mountain ranges overhanging the Enstern Dúusto the north end moro abruptly, leaving extensivo fat plateaus, chiefly covered with dense forest. The waters consequently do not run off so rapidly, and hence the existence of large swanps which cause the notorious unhealthiness of the Eastern Dún for six months during the jear. Under such circumstances it is not surprising that a very small portion is under cultivation. Tho flats may be said to range from 1,000 feet to 2,500 feet above sen-level, and the hills to the north to over 7,000 feet.
(11.) The field operations of the Dehra Dún aud Jaunsír Báwar eurveg lave been brought to $n$ final close. A largo amount of mapping has thus been thrown on the hands of the party; on which subject Mr. Ryall will report,

## Extract from the Narrative Report-dated 23rd November 1876-of E. C. RYALL, Esqr., 0fficiating Assistant Superintendent 2nd Grade, in charge of the Kumaun and Garhwal Party.

(1.) The survey of this sub-division of the Dehra Dín District was commenced on the 22nd

Inlroduclory and general remariks on the Survey of Juunsír Béwar.
(2.) At the commencement of the season, Messrs. LitchGeld and Warwick were deputed to assist. The latter however, hoving been lately appointed to the Department, had had no training in surveying; 1 therefore kept him with me for some little time to lenru his work. Later on Messers. I. Pocock, II. 'Todd, and 'I'. Kinney, were despatched to assist me. The first-named on the 23rd of February, the second on the 23rd of March, and the last on the 15 th of A pril, the date on which his furlough for six months expired.
(3.) 'The nea surveyed in Jaunsír Binar amounts to abont 430 square miles; this includes about 20 square miles of overlips. In addition to this, 72 square miles were surveyed by the Forest Survey Department, making the whole area of the sub-division to be 482 square miles. This quanlity exceeds by 139 square miles that given in Mr. G. R. C. Willitms' "Historical and Statistical Memoir of Delıra Dún, 1874 " page 51 , para. 109. Further ou, in page 58 of the same book, the area is also given as 210,520 neres or 343 square miles.
(4.) Gencrally speaking, the rule on apportioning topographical work to the assistants is to confine them to certain pramels of either spherical or rectangular co-ordinates as the cose may be. 'J'his plan is very conveniont in all respects in topographical surreys in the plains, where hills have not those lofty characteristies which exist everywhere in the IFimalnyas. This method of apportioning work in the survey of the IImalngas has been found very inconvenient; it cutails much labour and consequent: loss of time. I thought it better therefore to depnet from this rulo by distributing the work so that each surveyor would have watershed lines as limits to his pieco of work. lor this reason the index map of Jaunaír Biwar has not been marked off into ructangular blocks, usunlly called plane-tablo sections.
(5.) After going over the ground, I thought it advisable to lay down some additional points trigonometrically, which I felt sure would very materially ficilitate the topographical work in the lower valleys, These points were laid down chiefly from statious fised by Mr. L. Tocock in his triangulation of Jaunsér Báwar last season. In addition to this, I delermined the posilions of 14 points up the Pibar river : this was indispensable for the survey of those remote and detached patehes of country about Sansog and Bonpur, on the right bank of the Pabar. In all 52 points lave been added by me to those determined last season.
(6.) The amount of Inbour involved in surveying Jaunsír Báwar was much greater than I at first expectod. This was due to the various $k /$ ats (proprictary boundarics) nod boundaries of forest lands baving to be surveyed, which involved the fixing of the very umerous pillurs demmrenting them.
(7.) In the details of topography, I may here remark that upwards of 1,350 houndary pillars were laid down in Jaunsar Diwar by the party, aud the accuracy of their positions is quite in leeping
with the requirements of the scalo. The boundnry pillars were seldom found in conspicuous places; on the contrary, they were either in thick forest or in lidden nouke and corners; it was therefore no engy matter to lay them down without erecting flags nt or a few feed from them.
(8.) In order to lay down the limits of tho cantonment of Chakráta, I enquired first of the Erecutive Engineer on specinl military works, for information regarding its boundaries, but there was no one in the office who was acquainted with them, and all the information I could obtain from there whe a map of the cantomments showing its boundaries. But this map I unfortunately found of little or no use: it whs not true to scale in the first place; and in the second, while it professed to give the boundary towards the east of the Chakrata ridge by a contour line marked out by pillars at intervals, 1 found the pillars as pointed out to me very far from occurring in the same level. On the west, $\pi$ line had been at one time cut, as I sav slight traces of it here aud there for a few huodred feet at a time, but there were no pillers to indicate the general line of boundary on that side. 'Towards the south hovever, the boundnry wns sufficiently defined, and so also towards the north-east portion. My next efforts were directed to the Contonment Magistrate's office, nud there I was more unsuccessful still. I was therefore obliged to confine myself to fixing such pillats ns existod at the time of the survey. I am by no means sure that the pillars laid down are in their correct positions as originally marked out, for there was no one with me to represent cantomment intereste, and my information as to the pillars was siuply obtained through the zemindars whose possessions adjoin those of the cantonment.
(10.) The avernge height of the peaks in Jaunsír is about 6,000 feet above sea-lerel ; that of Kándal, a strip of comparntively very lofty ranges of limestone, lying between the parallels of latiturle $80^{\circ} 44^{\prime}$ and $30^{\circ} 49^{\prime}$ or thereabout and extending from the Jumnit on the one side to the Tons on the other, is about 8,300 feet above sen-level. Minny of the peaks however in this strip are close upon 10,000 feet high. In Biwar, the nverago height of the ranges is about 6,000 feet above sea-level. The great peculiarity of Jaunsar is the general absence of forests in it. Kándah is rich with folinge of many kindy, principally the oak, rhododendron, spruce fir, deodnr, \&c. Biwar is also very richly covered with forest, but not quite to the same extent as Kindah.
(11.) All along the banks of the Tons, the Pabar, and the Jumna rivers, the mountains are extremely precipitous; so are also the mountains of the Kandah belt. In other respecta, as to minuteness of detail, the three belts of country are not unch unlike one another.
(12.) I now proceed to report separately on cach Officer's work.
(13.) I marched from Mussooree on the 2 lst of October, and after having a general look at the country in Jaunsir Buwar, I commenced operations in the Binolgadh valley where I continued planetabling till the 2nd of Decornber. I then marched up to Sansog in the Pabar valley for the purpose of executing some tringulation, where I arrived on the $\boldsymbol{G}$ th. Unfortumately when returuing to camp during the evening of the same day I met with no aceident nud sprained my ankle, which disabled me in consequence from resuming work till the 9th, but on the 121 h I succeeded in sending Mr. Litchield the data for 14 pointe newly fisid, to enable him to complete the aketching of those small patches of country lying on the right bank of the Pabar. Shortly after I marched into Deoban, where I arrived on the 14th, Captain Thuillier having summoned me in order to conler about the work. I resumed the topographical eketching of the linolgadh valley on the 16 th December and finished it on the 24 th. I next took up the aketching of the valley of the Amlawa river down to latitude $30^{\circ} 35^{\prime}$, as well as a strip of country sbout $3 \frac{1}{1}$ miles broad lying to the east of the ridge which runs down from Deobau to Chakrita and thence to Pokri and Baret.
(14.) On the 26th February, Captain Thuillier narived at Sniy:, where he requested me to ineethim in order to make over to me the entire charge of the operations in Jaunsir Básar. So that in uddition to my other dutiee, that of examining the work of each of the asssistants devolved on me. I finished work on the 30th of a pril and marched back to recess quarters, where I arrived on the 3rd of May.
(15.) Mr. Neuville was employed the whole season in the office of the party carrying on the

## Mr. C. J. Neuville.

 miscellnneous current work, of which there was a large amount. He also assisted C'aptaiu Thuillier in the Dún by taking a fewvertical observations with a theodolite.
(16.) Mr. W. Todd begau work on the 13th October on P. T. Section No. 47, of the Dehra Dún

Mr. W. Todd. Survey, confiuing himself to those parts of the hills in it which were left unfinielied during the previous season. The flat and raviny portions in this section were taken up by two Native Surveyors placed under Mr. Todd. Mr. Todd next took up P. T. Sections Nos. 66, 67, and 68. The two former were entirely mountainous, and the latter partly ao. With the exception of a small portion done by Mr. I. Pocock in Section 66, Mr. Todd Hetched these three sections. The mountains in these sections range from 4,000 to 6,500 feet above sea level, and there is a geographical peculiarity in them which may be noticed herc. Tho slopes are very abrupt
for a sloort distance from the main ridge towards the south, and then the apure run at a comparatively gentle inclinc, and after that they terininate in a steep fall to the Dún. The middle slopes are cultivated for the most part and have the villages on them; the terminal ends of the hilly spurs and their flat plateau-like continuations are principally covered with síl. Mr. Twdd after completing the nketehing of the tsections above-mentioned took up the sketching of P. T. Section No. 70. The work of the Native Surveyors attached to him was carefully examined loy partal lines and found very accurate. Mr. Todd has turned out a fair anount of work, and for accuracy of sketching he has maintained the reputation which he has so deservedly won in the Department. Ho closed work on 22nd May and I regret to ndd thation the same day, he was prostrated from exposure to the sun and did not recover his health for some time.
(.17.) Mr. H. Todd commenced work on the 14th Ostoher in P. T. Section No. 56, Dehra Dín Mr. II. Todd. Survey, part of which had boen surveyed last season. THe then took up what remained of Section No. 36, a very difficult hilly piece covered with forest. His next piece of work was in Section No. 50, in which he was assisted by a Native Surveyor for the lower fat portions. This last section was also eovered for the most part with forest. He also sketched into Section No. $58 u_{p}$, to the watershed of the Song. The mountains in Section No. 56 rise up to about 7,000 fect above sen level, and in Seclions 58 and 59 he had the Kalimatii peak for his hig!est point which is 4.400 feet above sea level. There was a good deal of detail in the last inentioned sections. After sketching a portion of the forest-clad hill of Nulipáni, Mr. Toild was ordered to join me in Jaunsir, for which place he started on the 23 rd Mareh. On his arrival there he took up the sketehing of the middle portions of the Khutní river valleg, east of Chakráta, the ground in which ranges from 3,500 to 8,500 feet above sea level. This he began on the 28th Marel, and finished by the $29 t h$ of the following month. Mr. Todd worked very hard throughout the season, turning out a large quantity of work accurately done and drawn in a true and artistic style.
(18.) Mr. Kinuey reported his return from 6 montha' leave of abseuce on the 15th of April.

## Mr. Т. Kinzoy.

 As there was some doubt as to the possibility of completing the Jaunsir Survey before the setting in of the rains, I thought it advisable to have his help for the short romnant of the lield season, and therefore directed him to proceed to Jaunsir to take up the survey of the ground about Shenj, Uua, and Bahana villages on both banks of the Tons river. Mr. Kinney began work on the $2 \boldsymbol{2}$.nd April and finished by the end of the same mouth, after which he returned to quarters. He worked with his usual care and artistic skill.(19.) Mr. Litchfield marched from Head Quarters on the 16th October, and took up his first picee

## Mr. E. F. Litchfield.

of work which chiefly lies in Sheet No 1 of the Jaunsár Survey, about the ralleys of the 'lons, the Pibar and Dharigadh rivers. In this piece he had numerous patches of Goremment forests, the boundaries between which and the village lands were demarented by a verg large number of pillars. Notwithatanding their numbers, and the intricate nature of the momutains which were for the most part thickly covered with forest, Mr. Litelafield mamaged to get through this his first piece very creclitably. His nest work was chiefly on the east of tho Tons river up to about longitude $77^{\circ} 521^{\prime}$ ', below lalitude $30^{\circ} 421^{\prime}$, and down to the confluence of the 'Tons with the Jumma river. Mr. Citelfield bronght in a very large guantity of worls, carefully and well executed. He closed worts by the end of $\dot{\Delta}$ pril, and marched back to quarters, where he arrived on the 3rd May.
(20.) Mr. Pocock took the field on the 16 th October and began work in the Dún in P. T. Scetion Mr. I, Pocock. Nos. 48, 58 and a small portion of No. 66. He was assisted in the flat and raving portions of theve trwo sections by 3 Native Surveyors, who also nssisted him in traversing the main watercuurses. He completed his worle in the Dín on the 23rd Pebruary, and marched to Jamsir where I gave him a small portion of ground lfing to the west of tho Chakrita aud Mussoorce road, betreen latitude $30^{\circ} 30^{\prime}$ and $30^{\circ} 35^{\prime}$ and enst of longitude $77^{\circ} 55^{\prime}$. His next piece of work was between latitude $30^{\circ} 42_{2}^{1^{\prime}}$ and $35^{\circ} 45^{\circ}$ east of the Tons river and up to alout longitude $77^{\circ} 54^{\prime}$. Mr. Pocock after finishing the work allotted to him in Jaunsir on the 18 lh May, returned to quarters, where he arrived on the 2 开th of the same mouth. Mr. Pocock worked well and indefatigably.
(21.) Mr. Warwick remained with mo about 5 weeke learning his work, after which I sent him

## Mr. R. Warwick.

to survey a piece of ground about: $3_{1}^{1}$ miles in breadth along the western bank of the Jumma river, betweon the point of junction of the Rulina river with the Jumna and the suspension bridge on the Mussooree-Chakrita road. The next portion he undertook was to the enst of the 'lons river and about the village of Kandui. Mr. Warwick worked well and hard. He has the malking in him of a first-rate topographical survefor, and I feel no doubt that be will in the course of a fow scasous more, justify my anticipations on this head.
(22.) Six maps in all have been completed during the recess. These are ns follows:-

2 Skeleton Sheet Nos. VII and XXIV, scale 1 inch $=1$ mile, of the scale of the same survey, and 3 Sheets of the Dehm Dán Survey viz., Nos. VIII, XVI and XXII, scalo 4 inches $=1$ mile. The mopping has been very much retarded in conseguence of Mr. Kinney sustnining an injury by the fracture of his right wrist. His services as a druftaman were lost to we thereby for uearly two months.

## KUMAON AND GARHWAL PARTY.

## SURVEY OF JAUNSAR BAWAR, DEHRA DUN DISTRICT.

Tabular Statement of out-turn of work. Season 1875-76.
Details of Triangulation.

| Ofsebrem's Namy |  |  | 2 Angles Observed |  |  |  | Remaing, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | No. of Intersected points. |  |  |  |  |
| E. C. Ryall, Esquire, ... | 6-inch* | $\dagger$ | 52 | 104 | $\begin{aligned} & \text { Inches } \\ & 11 \end{aligned}$ | 9 | - Subtense instrument, one vornier only used. <br> $\dagger$ Over previously triangulated ground, inoluding 25 statione visited. |

Details of Topography. Scale 2 inches $=1$ mile.


Details of Tiaversing.

| Nayes. | Inatril. tent. | Linear miles of Trarersing. | No. of Stations. | A rempe ertor per 1000 links. | Rrmares. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| One Native Surveyor, ... | * | $71 \cdot 96$ | 1792 | 2-8 | - Card board circular protractor 12 inch in diametor and Necdle. <br> Traverae carricd along hill roads. |
| Total, | $\ldots$ | 71.96 | 1792 | $\ldots$ |  |


great trigonometrical survey of india.


## SURVEY OF DEIIRA DUN AND SIWALIK HILLAS.

Details of Topography. Scale 4 inches $=1$ mile.

| Naites. | Arci ampreyc.l in acres. | No. of Plane Table Stations per acre. | Remankg. |
| :---: | :---: | :---: | :---: |
| Mr. W. T'udd, ... | 18,564 | $5 \cdot 4$ | Mountainous and for the most part covered with forest. |
| " H. Todd, | 19,492 | 64 | Mountainnus and intricate and for the most part covered with forest. |
| n I. S. Pocock, | 7,534 | $5 \cdot 6$ | Mounlainoue and for the most part covered with forest. |
| 6 Native Surreyore under the superrision of the abore mentioned oflicers. | \} 33,691 | $3 \cdot 0$ | Flat and raviny ground and in some parts intricate and corered wilh forest. |
| Total nrea ... | 79,281 | 124 өquare | inles. |

## X. Extract from the Narrative Report-dated 13th September 1876-of Major A. PULLAN, S.C., 0ficiating Deputy Superintendent 3rd Grade, in charge of the Kattywar Survey Party.

During the recess season of 1875 fair maps of Sheets $31-42,43$ and 44 of Kattywar were pre-

## Prisonnel.

Major A. Pulian, S. C., Deputy
Supilt.
J. MeGill, Esq., A

## Surreyors.

Mr. J. Perton. "N. C. Gwynne.

## Asaistant Surveyors.

Mr. W. A. Tielding.
" W. Ollham.
" G. T. Hull.
" H. Corkery.
Senior Sub.Surreyor.
Mr. V. R. Gadboli.
Sul-Surveyors.
Gorindji Malialay.
Narsu Jinkar. ond eight others, pared onasale of 2 inches to a mile for publication on the 1 -inch scale; and the data connected with Degree Sheet VI of Kattywar were partially prepared. Mr. F. Bell, Surveyor 3rd Grade, worked during the recess season but did not take the field owing to ill health; Mr. Bell proceeded on one year's furlough to Australia on the 1st November 1875.
The out-turn of work for the seasou of $1875-76$ was considerable. An aren of 2253 square miles was topographically surveyed and consisted of parts of Pronts Liallár, Kattywur, Sorath, and Jhalamad: 1850 aquare miles were trigonometrically surveyed in advance, preparatory to next year's topograplical operations; und 1600 limenr miles of traverse were carried over the different sheets demareating the taluka and state boundaries and checking the details of the plane table survoy. .

The party started for the icld on the 20th October. The heary baggago and horses with the Departure for the Field. subordinate Native establishment proceded as in former seasons by "Intimar" bonts to Gogo which port they reached on the 2nd Norember. Messrs. Hall, Corkery nad V. R. Gadholi were sent in adrance of the main pariy to Gugo, and this armugoment saved several days' delay at that port, as they prepared plane tables, projected paints \&e, so that ench alurveyor on arrival found his board ready for him und was enabled to proceed without delay to his especial work.

I started from Gugo in company wilh Mr. MeGill on the: 15th November and we marched by regular mareloes to Mánckwara. Hore Mr. McGill turned north-

Capt. Pullan, Depiy. Suporintendent, ill charge.
ward and proveeded to tuke up, the triangulation of Shect 46 . I marched west to Junignth and on arrival there I proceeded to make a enreful reconnaisannce of the Girmir monntain, that isolnted pile of granite being n very remarknble gengraphical feature. Subsequently I proceeded norlhwards to Gondul and commenced my examination of the prave tables in sheet 36. With the cxception of $a$ fortnight spent in correcting on the spot the hill shading of a very rugiged and diffieult portion of country in Sheet $4 \overline{\mathrm{~J}}$, my time throughout the field season
was apent in the examination nnd cliecking of plane table work. On the 3rd of A pril I left Gogo on duty to Poona, and nfter examining the preparation of the fair traverse sheete which were in course of execution, I availed myself on the 8th of $\Delta$ pril of 2 month ' privilege lenve and proceeded to Mabableshwar, having made over charge of the party to Mr. MoGill, Asoistant Superintendent.

Mr. McGill executed the triangulation of sheets 46,47 and 48 in his usual admirable man-

## J. MeGill, Eqq.

 ner, completing in all 1650 square miles and joined me on my wny to Gogo at the end of March. Mr. MeGill then remained at Gogo bringing up Angle books and preparing triangle sheets for computation until the whole of the Plane Table Surveyors had completed their work. -Mr. l'cyton was entrusted by me with the independent charge of Sheet 10 a, the northernmost portion of Kattyrar abutting on part of Guzerat to the east and having the Runn to west and north, Nilkant Vital sub-surveyor

## Mr. J. Pegton.

accompanied Mr. Peyton. Mr. Peyton completed the topographical survey of the sheet and proceeded to Poonn to get on with the preparation of the fuir sheets. Mr. Peyton himself completed 206 square miles of topography-an out-turn of field work in every way satisfactory.

Mr. Gwyme worked in his usual energetic way throughout the field season. His out-turn of work was 201 square miles comprising the whole of the Girmár range, very difficult ground, sketched in a most artistic and cor-

## Mr. N. C. Gmynne.

rect manner.
Mr. Fielding executed 238 square miles of topography in very good style. Mr. Fielding is always most accurate and reliable and shows great tact and judgMr. W. A. Fielding. ment in dealing with Native officials.
Mr. Oldham executed 139 aquare miles of topographical survey in a creditable manner, a Mr. W. Oldham. portion of the ground which fell to his share, bordering as it did on the Gir Forests, was full of low spurs thickly clad with trees and small intricate ravines. Mr. Oldham also completed 200 square miles of triangulation (portions of Sheets 40 and 50 ).

Mr. Geo. Ifull.
Mr. Hall's out-turn of work was 204 square miles of topography carefully executed.
Mr. Corkery's out-turn of 206 square miles was highly creditable to him. He has much Mr. I. Corkrry. improved in his mode of delineating ground. The hills being shown in a really artistic and grapbic manner.
Mr. Visnji Gndholi worked steadily throughout in the projection of plane tables and compuMr. Visaji R. Gadboli Mend Sub- tations of the latitude and longitude of subsidiary points for Plane Survejor aud other Native Surreyors. Tablers. The amount of Cair mapping to be done in the recess being unusually henvy, Mr. Gadboli was sent by me to Poona in the end of Fehruary and was employed in computing traverses and preparing fair traverse sheets. Govindji Muhalay executed 201 equare miles of topography in lis usual neat and graphic style. His work was as good this season as in former years. Narsu Dinkar completed 232 liuear miles of traverse, the ground being in many places complicated indetail and difficult to chain. Krishna Govind completed 86 square miles of topograpliy. He is a new hand nt plane tablifg and was very slow, but I found his work carcfully done and very correct. Bholoji lBboseknr did a good senson's work as a Traserse Surveyor, bis out-turn being 289 linear miles carricd over a difficult country. Nilkant Vital executed 236 өquare miles of topography, a lnrge and bighly creditable ont-tura. Keshu Yital turned out 143 equare miles of topography creditably. His work of this scason shows a deciled improsement on that of former years. Tukaram Chowdry did a good searon's work of 211 linear miles of traverse. Ganesh Ramchandra completed 214 square biles of topography in a neat and workinan-like mamer. Vishnu Balwant executed 179 square miles of topography very well for a beginner. And Lazarus D'Suuza acted as recorder to Mr. McGill. He writes a nent hand.

Throughout the feld ecason, sickness prevailed in Knttywar, fever was rife, and cholera of

General health of the diatrict. a eporadic character broke out fitfully here and there. The party was exceptionally fortunate for only three deaths occurred throughout the different surrey camps, nlthough men were dying daily in the villages around.

The most remarkable geographieal featuro in the country surveyed during the season under The Girnár Rango. review is the Girnér mountain and ita spurs. This very remurkable granite mass, rising ns it does abrupily from the plain, can be seen on a elear day ata distance of 50 milea looming in laze ou the verge of the horizon. The mountain lies due east of the town of Junigarh which is at the foot of one of the western apurs.

The highest peak of Giruar, known by the pundits ns Ujyant, rises to an elerntion of 3,666 feet above sea level; the upper part of the mountain towers almost perpendicularly above the surrounding
spurs some 500 feet, a buge mass of granite intersected dingonally by thin laminx of quartz; this pile is broken at the summit into threo sharply defined penks, the westernmost and lowest being dedicated to Amba Levi, the middle and highest point to Goraknath, and the enatermmost to Datatri Swami; round this great central mass the lower epurs wind and spread inclosing the holy mountain in a circle of hills. 'The next highest peak on the range is called Datar, and nestling below the granite precipices which crown the mountain is the shrine of Jamil Shah, a celebrated Pir to whose encred tomb leprous and blind both Mahomedan and Hindu even now journey to be made whole again. One more peak Kalika Tonk may be mentioned, which though lower than Girnár or Inatar, still rises to a height of 2,527 fect above rea level and attracta the eje by the grandeur and abruptness of its granite pinnacle. Girmar is held in the greatest veneration both by Brahmin, Jain, and Mahomednn. The most remarlable temples on the hill are Jain nind are at the bnse of Amba Devi peak; they bear dnte "Sumwut" 1215 or A. D. 1159 . As the traveller appronches from the west the sacred " Ujynnt" towers above the picturesque town of Jumágarlı, a blue cone; on nearer appronch, the mountain takes shape, aud spurs and precipices appear, and enclose a good Harged road the via sacra of Suraslitia, which leads from Junágarh through a lovely wooded valley by the green waters and temples of Damodar Kund, a linunt of fakirs and monkeys, for some $3 \frac{1}{2}$ miles until the foot of the mountain is reached; still there is no break in the roal, the broad flarged path winds its way through brushwood and crag and along the face of granite precipices, past the Jain temples of Amban Devi, until it terminates on the topmost point of Goraknath below the hung timestained walls of the little temple. Only the most encrgetic of the pilgrims force their way beyond this point, but a determined few may be seen struggling, with painful steps and slow, over the rugged geanite to the lovely little temple of Datatri

One striking feature on the mountain is an immense perpendicular rock called Bhern Jnp, from the summit of which in the days before British rule was established, hundreds of mad devotees threw themselves into the abyss below as $n$ religious act of suicide.

The scencry of this remarlable range is unique. 'I'he enormous crags and perpendicular precipices of black granite are tinged hore and there with hoary stains of time and exposure. The temples ancient and weather-worn, and the long arms of lower ranges that stretch round and wrap in crag and forest the skicts of the grent central pile of Gimir, form a scene of picturesque beanty and grandenr not to be surpassed. The view from the summit of the mountain is wonderful, all Kattywar seems spread out like a map under ; and at sunset when the sun's declining rays tinge temple and rock with glowing tints, aud the Gulf of Cutch gleams in the horizon like a golden zone, the traveller gazes on a scene perfectly unique and singularly heantiful. The heavy forest and thick underwood which covers the Girnir range is the haunt of numerous Sambar, but they aro shy and difficult to come across, leopards also hang about the ravines rumning into the plains in considerable numbers.

Principal Towne,
The Principal towns in the portion of country survoyed this season are:-
lst, Gondal-the principal town of the Gondal state; the chief is a Thareja Rajput. The town is on the banks of a small stream a tributary of the Bhidhar, and is clean and well kept: the high road from Rajkot to Junágarh runs through Gondal, und a nent bridge spans the river. The Political Agent's lungalow, Public offices, Post office and Hospital, all well built edifices, ghmbine to give Gondal a romarkably thriving look, and the town is also connected by an electric telegraph line with Rájlot and Bombay.

2nd, Jetpur—this town is the seat of a petty "Katty" chief of the Wala race. It is a walled town very picturesquely situated on the banks of the Bhidhar river over which a handsomestone bridge has just been erected by the Ixecutive Dingincer for Kattywar. Behind the town looms in the far distance the Girnir mane, and the rapids of the Bhidhar in the foreground, combine to form a very pleasing picture. There is a good travellers' bungalow at Jetpur, and the high road between Majkot and Junagarh passes close by the town.

3ra, Dhordj-this is one uf the chief towns of the Gondal taluka; it is situated on the south bank of the Khithar river and is a large nod thriving place: there is a very good school here, and the town is connected viá Jetpur, Gondal, Rijloot, and dhmednhad with Hombay by a line of telegraph.

4th, Junagarh-this town the sent of a Mahomednn Nawáb, is situnted among groves of mango and other trees, a strong wall formerly surounded the town, but it is now filling into decay, a large fort called Uparkot looks down upon the town, but although formidable in nppenance it is now uncared for and descrted. Junigarh with a pojulation of 18,311 aouls is inferior only in inportance to Jimnagar and Bhannagar, and ranks as the third town of the province. The town is surrounded on the sonth and west by hesyy jungle siretehing for miles, and on the east it is shat in by the lower epurs of the ( fi ruár, the north approach is open and n good metalled road runs between lajikot und Junágarla. The water supply of the city is bad and scauty. Junagarh is connected by electric tele-
graph with Gondal and Ríjkot.
5th, Jhinjhutára-this is a town of some size whose crumbling walls and massive old gateways indicate former prosperity. Not far from the town and on the edge of the Rum is the island of Jalan. dar on which are some curious springs of brackish water which bubble up from the ground even in the severest drought. Jhinjhuwára is the residence of a Rujput 'Thákur, buta Kamdar, deputed by the British Government, ndministers justice and collects the revenue.

The principal rivers which flow through the country under review are the Bhádhar, the Ojat, and

## Rivers.

the Uben. The Bhadhnr the most considerable river in Knttywar rises in the low hille north of Jandín and taking a south-western course falls into the Gulf of Cutch at Nawi Bandar. In the rainy season the Bhadhar is said to be navigable for small craft as far inlaud as Dhoraji near Junigarh. The Ujat rises in two furks in the platenu near Mánekwám and flowing north joins the Bládhar nbout 4 miles from Nawi Bandar, The Uben rises among the northern spurs of the Giruar range and falls into the Ujat at Wauthali.

The villages in the portion of Kattywar surveyed during season 1875-76, are decidedly
Appearance and oharacter of the populous, the country being fertile and, for Kattywar, well wooded, country. mango, tamarind, bar and pípal trees are here scattered over the plain and afford a grateful shade near viliages and wells. Fine crops of bajree and cotton are grown throughout these districts, and the sugnreane is also largely cultivated.

About one third of the people of the Junagarh state are Mahomedans, the remaining two-thirds are Hindus of various castes. In the Gondal state about three-fourths of the people are Hindus, the remainder Mahomedans. Guzerati is the langnage of the masses, but Hindustani is well understood in all the large towns, more eapecinlly Junigarh,

INDEX CHART OF THE KATTYWAR TOPOGRAPHICAL SURVEY.


The numerals $1,2,3_{\text {so., indicate the the shets on the scale of one inch to the mile. The sumerals }}$ I, II, III \&C., indicate the degree sheets, on the Sale of $\ddagger$ inch to the mile.

original Surrey us. . 2 inches to the mile for the ase of locat offcians.

Details of Triangulation.


## XI. Extract from the Narrative Report-dated 30th October 1876-of Major C. T. HAIG, R.E., 0 ficiating Deputy Superintendent 1st Grade, in charge of the Guzerat Survey Party.

(3.) The out-turn of field work consists of 924 square miles of topography on the 4 -inch seale

## Perionnel.

Mnior C. T. Haig, R.F.
Licutemant J. E. Gibbs, R.E.
Mr. A. D'Souen
A. II. L. Christio
" C. H. McaFee
" J. Hickie
" G. D. Cusson
, S. F. Norman
" C. Norman

## Sub-Surveyors.

Mr. H. G. Ferns
Gopal Vighmu
Bailkrishana Bíbájee
Labshumain Gharpuri
Gancsh Nicuigen
Gunesla Bripuiji ist
Knoji Nurnsen
Bulwurt Gorind

Mukand Dinkar
Bhao Govind
Ganem Bapuji 2nd
Monnji Abu
Gopind Gopíl
Bulwant Rajaram
J. V. D'Souza

Sajena Saibu
Revenue Strroay
H. D. E. Forbea, Eeqr.

Sub-Surveyor.
Kubar Parbhudńes
Jugal Mánsuklırím
Parbhu Kisor
and 948 square miles on the 2 -inch scale, the former being chiefly British Khúlsa land and the latter chiefly Foreign territory; and 1650 square miles were prepared for final survey chielly by traversing but with a little triangulation where it was necessary.
(6.) The area finally sur. veged comprises sheet 31 aml a quarter of 32 ; nlso 78 and 79 with a small portion ( 56 square niles) of sheet 10 R of Kattywar. This small portion was surveyed by us on the 4 -inch scale as it was

British Khalea land which I thought desirable to have mapped on the same scale as the rest of the territory to which it pertnined and adjoined.
(7.) The orders of Guvernment restricting the scale to 2 inches to a mile were received too late to admit of any alteration in the field arrangements, but although the British Khalsa land was surveyed on the 4 -inch scule it will all be mapped on the 2 -inch scale; so that the cost will uot be appreciably more than if it had been surveyed on the 2 -inch scale. The field sections have been reduced to half scale in the Govervment Photozincographic Office here and from the reduced copies fuir maps are traced.
(4.) The area topographed is, as will be seen on referring to the accompanying Index map, in two parts, which I mag call the northern and southern. The northern portion includes a large part of the Virangam taluka and a emall part of the Sinand taluka of the Ahmedabad collectorate, n part of the Kari Mahal, and six villages of the Patan Mahal of the Gne'k war's territory, and a small part of the Mahiknintu. The Viramgím taluka bas now been completely surveyed with the exception of 4 detached villuges situated in sheets 72 and 77 , and the Sánand taluka is nlso complete with the exception of 8 villages in sheet 7. In this northern aren are the following principal towns:-

Firamgan-a daluka town ; population about 20,000, with its municipality, a Mamlatdar's court, and a Railwny station where the line from Khiraghora (distance 14 miles), the great Government Sult etation, joins the Wadhwin and Alimedabad line.

Mándal-an important Khálen town, with a population of about 7,000, and having a municipality and a Post office.

Detroj-n Kluilsa town, with n population of about 3,000 , and a branch Post office.
Kari-the chief town of the Kari Mahal, Gaekwar's territory, which has a somewhat interesting liatory attaching to it. It has a population of about 17,000 , and a finc palace, and is fortified by a good wall from which it ia atyled Kila Kari. It is the residence of a Whhiwatdar (Manger), a Manlatdar, and a Fonjdur, and has a Post office. In 1802 it stood a siege and was taken by Sir Willian Clarke on the 30th April of that year from Malharao Gaekwar, who, a Jaghirdar of Kari, was nominally a dependant of the Gaek war of Baroln to whom an annual tribute of Rupees 120,000 was payable, and who though within the Gaekwar's territories was as independent of him as the latter was of the Peiahwa. Mallarno rebelled aguinst him, nud perinps but for the British troups might linve maintained his independence, but on the capture of Kari he was taken prisoner, and Kari and its distriat were made over to the Baroda Gaekwar, who in conaideration of the British services ceded the Chikhli pargama, now a taluka of the Surat collectorate, to the British Government. Maiharao's father was the firat Prince of Kari; he was established there by his father Pilaji Gaekwar in $\mathbf{1 7 3 1}$. The palace and town walls were therefore probinhly built soon nfter that date.

Bechráji I/átha-a rillage in the Pátan Muhal, Gaekwar'a territory, of only 123 inhabitante, nitunted mone the rillaro of Bechar of G20 inhabitants, fumous for its templo and its melas (fairs). A mela is held there every month, but once a year in the end of September there is a fumus aud very largels attended mela visited by Hindus of all castes from all parts of Guzerat.

Katosan-n Thakur's town under the Mahikánta Political agency. It has a population of over 2000, and has n number of dependent villages. There are other villages of over 1000 inhabitants but of no particular importance.
(9.) The whole of the northern area is without any through drainage. There is an abundance of tanks which nppear to accommodate the whole of the rainfall. There is not a single watercourso which flows either into the Rumn of Cutch on the west, or into the Sabarmati river on the east. A fery watercourses, withoul even sufficient importance to carry a name, drain into tanks or lose thematives in the flat country. There is a large lake on the north-west margin called Wanod-na-Saran (from Wanod, a neighbouring talukn town uuder the Kattywar Political agency) which covers when it is full about $6 \frac{2}{9}$ aquare miles. Hilf of this falls within our margin, the other half has been surveyed by the Kattywar Party.
(10.) The country on the enst of the northern area is fincly wooded with Mango, Kirni, Tannarind, Banian, Pipal, Nim, Wood Apple and other trees, and undulating to an extent embarrassing to the plane tabler, as the undulations conform to no marked aystem of drninage, but are very irregular; so that had the country been accurately contoured, the contours would meander so as to defy eye sketching, that is to say, no two surveyore would have represented the snme ground in the same way withont spending a very lony time over it. The west of this area is very flat and open, the trees being almost confined to the immediate vicinity of the villages. The soil also is very different on the east and west. On the west it is clay with scarcely any admisture of and, while on the enst the sand predominates, so that within a distance of 30 miles the general aspect nud character of the country undergoes $n$ very marked change
(11.) The Bombay Buroda and Central India Railway traverses the northern area from west to east not far from its southern margin, and the Ahmedabad and Virangam road enters the southern margin at $6 \frac{1}{2}$ miles from the south-enst corner of sheet 79 , but this rond is of no importauce now as an engineering work; part of it, between Sánand and Viramgám, has been taken up for the permanent way of the Rnilway, and the rest is sadly out of repair ; east of sinand in slieets 80 and 8 the road is in good order. 'The Govemment telegraph wire just crobses the north-east corber of this aren, and about 6 miles of its length lie within the margin. There are no other enginecring works in the northers area.
(12.) In this part of the country crime abounds to an alarming extent. Freebooters take advantage of the many politicul divisions of the country and evade the Police of one state by retrenting into nother. When I was at Kari a troop of the Gaekwar's cavalry halted there for a few days in the course of their senrch ufter some of these robbers. Fortunately the robbers think it pulitic not to molest servants of the British Governmeut, and so none of our surveyors were interfered with.
(13.) The southern area comprising sheet 31 and the north-west quarter of sheet 32, includes part of the Bronch, Ámod and Aukleswar talukas of the Broach collectorate (which is now with the exception of a sinall portion of the dukleswar tuluka and a very amall portion of the Ámod talukn completely surveyed), part of the sinor Mahal of the Gnek war's territory, also part of the Rajpipla territory and of the Sánkhera Mewas under the Rowaikánta l’oliticnl agency.
(14.) In the southern area are the following principal towns:-

Broach City and Civil station-with a population of about 37,000 . This is npparently a city of grent antiquity and suid to have been known to the ancient Cliuese under the name of Polee-kie-tel'c-po', the capital of a kingdom on the Nai-mo-tho or Nerbudda.* Arrian the Greek, and Ptolemy the Egyptian historian of the Augustan period, speak of it as Bariguzn situated ou the Narmadas; and the unknown nuthor of the Periphas of the Frythrean Sea, geographically identifies it with Barigaza by the statement of its being " 30 miles on the Narmadas" nnd by his accurate description of the "bore" or tidal wave of the Gulf of Cambay. Its name has at various times been much trausformed from the original Brigukarlin, literally the delta of Brigu the tutelary suint of the river whose shrine is still to be seen in old Hronch. "To the Arabian travellers of the tenth and twelfth oenturies it was known at different times "as Baroh, Baros, and Buhruj; the latter phonetically the same as it is now in Guzerati. It has had "at least a dozen forms in Euglish in three generations : but Broitsh, Borich and Broach seem to be tho "last." 'The administration of Broach and its dependent territory chauged hands several times in the I81h century. It was taken in 1772 by the British who entrusted it to a Native Chief and council till 1783, when it was conferred on Máhadaji scindia on necount of his valuuble aid and services in 1779 ; but in 1803 Seindia took up arms ngninsl the British, and in that year Broach was taken by storm and subsequently ceded by treaty to the British in whoso hands it bas remained ever since. Bronch is now famous as a great cotton centre, and bonsts of eoveral npinning and gimuing mills and presees. The town is on the Nerbuddn and covers an aren of about 2 miles by nearly $\frac{f}{f}$ a mile. The Civil station is at the west

[^7]end of the town, the Railuny station at the enst ond. It has a municipality and the usum offices to be found at every administrative centre of a district.

Anklestar-the chief town of the taluka of that name, has a population of nenrly 9,500 , a Mamlatdar's court, a municipality, a Post office, and a Railway station which is vearly due south of Bronch station at a distance of 6 miles. It is on the sonth side of the Nerbudda and about 3 miles from its present bauk, but on the edge of what is the traditional old bank. The river must have changed its course very mung years ago ns there are several very populous towns on the lower ground between the aucient and modern bnuks. Ankleswar was ceded to the British by the treaty of Bassein in 1802.

Sinor-the chief town of the Gnekwari pargana of that name, has a populntion of nearly 6,000 . Like every such town it has its Wahimatdar, Mamhotdur, and Foujdar. It is situated on the right bauk of the Nerbudia. The bank is here very precipitous and varying from 90 to 120 feet; the communicution therefore between the town and the water is effected by wide ghats of masonry steps. It has also some fine entrance gateways.

Tankari-a large town of some 3,200 inhnbitants; on the main track of communication between Bronch and Baroda, has its traveller's bungalow, and is about 13 miles from Bronch-

Sukal-tirth-population 2,000; Janor-population 2,600; and Nikora-population 2400 ; are three towns in the Broach taluka on the right bank of the Nerbudda, the first two are about 67 milea apart and the last intermediate betweens them. Sukal-tirth is about 15 miles from Broach, and is famous in hnving its name always connected with a notable Banian tree under which it is said Alexander the Great encamped with his army*: Pliny mentions this tree as capable of affording shelter to an army of 30,000 men. On an island in the Nerbudda nearly opposite Sukal-tirth is now dense wood in the place where this famous tree once stood it is said alone, and from its isolation was supposed by the natives to have sprung from the tooth-pick of Kabir, a Gurn who grafted the tenets of several modern creeds upon a Hindu slock so craftily as to render the question of his diseiples being Hindu or otherwise still open to debate. The island is called Kabiwar from its having a temple sacred to Kabir on it in the thick of the wood but no portion of it pertains to Sukal-tirth. It is divided between Nisora and Janor and two other intermediate villages Mangaleshwar and Augareshwar, and the wood is on the part which pertning to Mangnleshwar, but nevertheless this wood which from a little distance has so regular an outliue as to appear like n sirule hage tree is always called the Suknl-tirth Banian tree.

Diva-population 2,000, and Bhar Bhala Bet-population 2,000; these nre two of the populous towns situnted on the low ground between the ancient and modern banks of the Nerbudda mentioned in connection with the town of Ankleswar ; they pertain to the Bronch taluka.

Chandod-population about 3,000 ; on the right bank of the Nerbudda. It is a town under Mándwa in the Nánkhera Mewas under the Rewákfintn Political agency. This town is on the eastern margin of sheet 31 and therefore serves well to define the extent to which the Nerbudda has been surveyed, it being mapped from Chandod to the gulf of Camlay.

Kund Bhalod-population 2,200; in the liajpipla territory on the right bank of the Nerbudda. Rund is the old and Bhalod the new town, but both adjoin and rake one large town the chief centre of a pargana and the residence of a 'lhanadar.
'There are in this southern area 24 other towns and villages with populations ranging between 1,000 and 2,000 . Among the still smaller villages is one Ratanpur remarkable for its cornelian. It is on the south of the Nerbudda in the Rajpiplu territory. The cornelian is dug out of a hill near the village, and taken to Cambay where it is cut and polished chiefly by a number of blind folk, and sold to the public under the well known name of c'ambay stones. Mr. Christie reported on these cornelian mines of Ratanpur in 1873 vide p. 34-a of Andual Report for 1872-73. There is also nenr Rulampur, and within the precincts of a temple, a fnomus tree of ordeal, of which the trunk in cleft through nad by it a man suspected of crime is minde to nssay to pass. His guilt or innocence is proved by the tree either contracting the opening and ditaining the culprit, or by allowing him to pass through without hiudrance; such is the popular superstition.
(15.) The southern area is traversed by the Nerbudda river which is tidal as far as the Gaekwari villaye of Itánápur about 24 miles in $n$ direct line from Broach, but 36 miles by the river. Jarge native craft come up as far as the Railway brilge at Broach, but above that, craft up to 30 tons ply as far as I'alakwara about 40 miles direct from Broach and 65 miles by the river. The Nerbudda hus several small tribularies which fow into it from the Sátpura mountains: the western extremity of which enters the south of sheet 31 ; and the whole of the country between the Nerbudda and the Sátpurns is very much cut up with mvines and watercourses, making about 200 square milea of cuuntry extremely difficult to survey, particularly to hands who have been accustomed to the flat plains of British Guzerat. This part of the country is mostly very wild, thickly wooded in parts

[^8]with bastard teak and in parta with palm trees, and the soil is rery stony. With the exception of the neighbourhood of the river, where there are many towns and villages, the interior of this part of the country is inhabited ly Bhils, and the biils are the abode of tigers, panthers and other wild animala, which frequently allure the Bronch sportsmen to pay them a visit. On one occasion Mr. Cusson was surveying a Nala when a tiger sprung out of a bush within 30 yards of him, on the other side of the Nala, and made off into the jungle.
(16.) With the exception of a small area of land in the vicinity of the Nerbudda called Bhála and (lorat (both of these having a largo admixture of sand in the composition of the soil) the remainder of the southern aren is a great plain of black soil, which in the cold wenther under the lururiantly verdant crops presents the appearance of a sea of almost homogeneous brillinut green, beautiful to the eye of the Revenue Officer, but too monotonous to please an arlist as it is not even broken by a hedge; the villages are scattered over it like islauds from 3 to 6 miles apart, and a few babul trees stand out like bearons here and there.
(17.) The aouthern area includes 25 iniles of the Bombay Barodn and Central India Railmay, and tho stations of Ankleswar, Bronch, Chamárgam and Palej. 'There are no metalled roads in this area (excepting those within Broach municipal limits) but there are gevernl cleared roads which have the adrantage of being struight, but con acarcely be called engineering works.
(18.) The Head Qunters of the party left Poona on the 8th November, and Office was opened at Bronch on the 14 h ; but previous to leaving Poona each of the Surveyore was given his portion of work so that ench went at once to his proper post. I distributed the party as follows. Triangulation and traversing in sheets 28, 29, 30, Licutenant Gibbs and Mr. l'orbes with three Native Surveyors of the levenue Survey establishmeut. Topogruphy of British Khilsa land in the northern area (sheets 78, 79) on the scale of 4 inches to a mile, Mr. D'Souza with 8 Native Surveyors including two new bands who had to be instructed in plane tabling. British Jalukdari and Foreign territory in the same sheets on the scale of 2 inches to a mile, Messra. Hickie, $S$. Norman and C. Norman. Topography of the southernaren (sheet 31 and part of 32), Messrs. Christie and Cusson and Native Survegors Gopal Vishuu and Bhao Govind. Drawing Office, Mr. Mca'Fee, Mr. Ferns and 4 Native printers and draftamen.
(19.) Un account of the rapidity with which the plane tables on the 4 -inch scale were completed in the previous season and the consequent difficulty in having boards always ready mounter and projected to take the place of boards completed, I before leaving Poona devised n means of mounting plane table sections on to the boards dry, which turned out successful in every wny and enabled me to sen! new sectione projected with graticule and data points to the surveyors by post or to give out two or three at a time to a surveyor who could talse his completed section off his board and replace it with a new section in a few minutes ; and so each survegor had bul one bonrd which he never changed through the senson.
(20) The means I adopted were as follows; I fitted ench plane table with natrip of deal on each of its fuur sides. Three screws clamped each strip to the board. The serews had flat broad heads but not broader than the thickness of the table; so that they never interfered with the play of the sight rule, and corresponding brass femnle serews were let flush into the sides of the trble. I also adopted what is as far ns I know n new method of mounting the paper on cloth. I lay the paper fice down on an ordinary table, then wet and paste the cloth on the back; the ovcrinps of the cloth adhering to the table keep the paper aud cloth perfectly tight during the process of drying. When dry the mounted sheet comes easily awny from the table, and the sheot never having had its surfuce scrubbed with a sponge as in the ordinary process, presents a benutiful oven appenrance and is perfectly flat; such a sheet can readily be strefohed on a plane table and secured with the deal strips and brass screws if holes are cut in it to admit the screws and mude sulfici ntly large to admit of a little play up and down. If once made tight in the cool of an early morning it never riquires further stretching.
(21) After remaining 3 days at throach, 1 began moving nbout sheet 31 umong the plane tablers, and remained there till the $2: 3 \mathrm{rd}$ of December when I went to the northern aren and moved nbout among the plane tablers there until the 22 nd of lebruary: I then returned to Broach and in a few days called in Lientenmit Gibbs to relieve me of the charge of the Party to enuble me to avail myself of three montha' privilege leavo which I took from the 13 th of that month. I also called in Mr. Forbes and his Nutive Surveyors who had by that time completad a sufficiency of traversing in sheets 28 and 29 for our next season's requirements, and wilh the assistance of Mr. Forbes and one Native Surveyor I commenced the compilation of $n \mathrm{mup}$ of Broach on the acale of 16 inches $\mathbf{t o n}$ mile from the sheets of the city survey drawn on the acale of 66 feet to an inch hy the Revenue Survey. This was a work requiring careful management an 71 eeparate maps had to be fitted together and correctly placed ns to the graticule. Mr. Jorbess other two surveyors commenced the transference of fiscal details from the lievenue Surver village maps to the phane table section that had already been completed.
(22.) On my return from privilege leave on the 7th June, Lieutenant Gibbs handed me a most satisfactory memorandum giving full particulars of his management of the Partr during my absence. Lenvingthe drawing office under Mr. McA'Fee in Broach where nlso he left Mr. Forbes and his Native Surveyors, he spent the remainder of the season in the southern aren inspecting the different surveyor's work; and he also supplied $n$ fev points by triangulation where there wns a defi. ciency. As the delineation of the hills in sheet 31 was something quite new to the surveyors working in that sheet, and ns Lientenant Gibbs could not possibly have found time to initiate them himself in the art of hill sketching, he wisoly sent for Mr. D'Souza from sheet 79 for this purpose, and directed Mr. Hickie and Mr. C. Norman to supervise the Native Survegors who had been working under Mr. D'Souzn. On the 3rd May be rejoined the drawing office which bad opened work in Poona on the lst.
(23.) I now state seriatim the work performed by each of my assistants. To Lieutenant Gibbs

Licutenant Gibbe. was entrusted the preparation by trinugulation and traversing of the foreign territory in sheets $28,29,30$ for final survey. Where he found it practicnble-that is where the country was fairly open-he spread a net-work of triungles, but through the wondy parts he ran a system of traverses at regular distances apart based upon the triangulation. The stations on the west flank of the Singi Meridional Series, the enst flank of the Mrhi Series and the net-work of sheet 31 ufforded the requisite points of departure and closing for buth his triangulation and traversing. He was assisted in the triversing by Gopal Vishuu, Ganrsh Bripuji 1st and dianesh Bápuji 2nd, but each of these was employed on work elsewhere during part of the season.
(24.) Mr. Forbes assisted by his three Native Surveyors of the Revenue Survey Department had the preparation by traversing of the British territory in shects 29 and 29. The river Mahi may be said to be the boundnry of the Bri-
Mr. Forbes. tish territory though there are small divergences therefrom. The traversing of the British territory comnot be laid out in any regular line but has to strike upon all the tri-junctions of village boundaries as well as on each villuge site, for reasons which have been explained in former reports.
(25.) Mr. D'Souza had the supervision of the plane table surveying on the 4 -iuch scale of the British territory in the northern area. I placed under him Lakshumín Gharpuri, Mukand Dinkar, Ganesh Bápuji 1st, Raoji Namyen,

> Mr. D'Soura. min farpuri, Mis duty was to keep moving about nimong these six men inGovind Gopal and Bnlwant Rajnram; nnd his duty was to keep moving about nonong these six men inspecting their work and seeing that they made proper use of the Revenue Survey village maps. He ulso had under him two new hands who had to be taught, Sayana Saibu and another who turned out a failure and had to be discharged. Subsequently I had to withdraw for the drawing office Lakshumán Gharpuri and Mukand Dinkar-Snyana Saibu having meantime been taught-and later on Ganeah Bapuji lat to hely Lieutenaut Gibbs with the traversing. Mr. D'Souzn had to be coutinually on the move, and although it was not necessary for him to take up a plane table hidself his work was hard enough. I'owards the close of the sengon as stated iu para. 22 he had to proceed to the southern area us an iustructor in hill drawing.
(26) Mr. Christie was emploged plane tabling in sheet 31, both British tervitory on the 4-inch

Mr. Christie. scale and foreige on the 2-inch scale, uutil the middle of March when he relieved Lieutenant Gibls in charge of the work of triangulating and traversing the foreign territory in sheets 29 and 30 . His out-turn must be considered very good.
(27.) Mr. McA'Fee was emploged the whole season in the drawing office; his duties were multiMr. McA'Fee. farious, generally supervising the drawing work and projecting the data on the plane table sections.
(28.) Mr. Hickie turned out 210 square miles (including overlaps) of plane tabling in the most Mr. Inctie. diffeult part of the northern aren. Being wholly foreign territory it was all on the 2 -inch scale; it is auperficially tho largest area surveyed by one person in the season, and keeping in riew the nature of the ground, must be considered very gend.
(29) Mr. Cusson was employed at first on British torritory on the 4 -inch acnle in shect 31 and

Mr. Cusson. then on the foreign territory on the 2 -inch scale in the same sheet. Subsequently I transferred him to other ground and then directed him to take up British territory on the 4 -inch scale in sheet 32.
(30.) Mr. S. Nurian was at first employed in the northern area where he completed 82 square

Mr. S. Norman. miles of plane tabling on the 2 -inch scule ; this he had just completed when I was compelled to transfer Mr. Cusson from Baroiks to British territory, and I therefore directed Mr. S. Norman to take up the work in Baroda territory in the southern aren that Mr. Cusson had to abandon, and during the remainder of the season he worked in the amithern aren. From the instruction he received from Mr. 1'souza und subsequent practice in the Ifajpipla hills he became a very fuir hill sketcher. His out-turn must be considered very good.
(31.) Mr. C. Norman was emploged exclusively in the northern area plame tabling on the 2 -inch scale. Ile is an accurate and careful surveyor, but his out-turn is not so large ns his brother's on account of his falling sick and being
from the lst of April, and also from his hoving to survey the city Mr. C. Normma. incapacitated for work in the open from the 1 st of April, and also from his having to survey the city
of Kari the traversing of the main thoronglifares of which detained him a week. During the latter part of the season, Lieutenant Gibbs employed him in the drawing office at Brouch.
(32.) Of the Native Surveyors, Gopal Vishuu and Ganesh Bupuji Lelé proved themselves useful

## Native Survejors.

 hands both with the plane table and at traversing, but the latter is not so active as the former. Raoji Narayen and Blaoo Govind have the best out-turns of plano tabling : the latter was sick for a month and had a very intricate piece of ground in one plane table, so that his out-turn is less than that of the former.(33.) During the field season the castern half of degree sheet II was commenced and completed, and as it contains 4 sheets of the most thickly populated part of Guzerat ns well as the most thickly wooded, the drawing and printThe Drawing OGice. ing of this map was no light task. Mr. Ferns drew and printed the whole of it. Mr. Ferus had aleo to re-draw half $n$ section of sheet 80 on the 4 -inch scale which had been injured. The printing of $10 \frac{1}{3}$ sectious on the 4 -inch scale was commenced nud completed, and that of 7 sections had been commenced in the previous recess but was completed in the field—altogether equivalent to about $\mathbf{1 4}$ sections. The drawing office was weakened by my employing two hands, Lakshumán Gbarpuri and Mulrand Dinkarin plane tabling, while two new hands were beiug instructed in that branch so as to utilize the services of the khalassies who would otherwise have been idle; nud owing to the inability of these new hands tolearn plane tabling quickly, the two Nativo Surveyors were absent from their posts in the drawing office till the latter end of January. From this canse and from the occupation of Mr. Ferns on degree shect II, geven sections on the 4 -inch scale remained incomplete when the office returned to Poona.
(3.4.) The orders of Government restricting the scale of British territory to 2 inches to the mile in place of 4 inches to the mile has somewhat burdened us with another innovation innsmuch as it entails a new style of draftsmanshij, and so the preparation of these maps for reproduction on that scale hae somewhat thrown our mapping into arrears, but I have made the drawing office stronger than last field season and I hope to finish off all the mapping before the Party returns again to recess quarters.
(35.) The maps published ou the 2 -inch scale will contain all the detail of the 4 -inch scale with the exception of the Gields and their numbers which were derived from the lievenue Survey mapa; and that kind of detail will by no means be eutirely dispeused with, as the trijunotions of fields, along tho village boundaries, along the boundaries of waste lasd and wherever the plane table stations ocour, have still to be inserted with a sufficiency of their numbers printed to euable identification of the field corners. But the drawing of these 2 -inch scale maps is very muoh finer than that of those on the 4-inch scale and this increase in fineuess of execution means increase in time of execution, so that the time we gave in detail we nearly lose in superior workmanship. The maps now in oourse of preparation are-as works of art-superior to auything we have bitherto succeaded in producing, and I doubt not will be greatly admired by all who have to use them.
(36.) The computations of the triangulation and trarersing of the past season are all approsoh. ing oompletion, and will be completed before we again take the field.
tabular statement of work execoted by the gozerat pariy. doring the field season 1875-76.


GREAT TRIGONOMETRICAL SURVEY OF INDIA
INDEX CHART OF THE GUZERAT TOPOGRAPHICAL SURVEY



# XII. Extract from the Narrative Report-dated 12th December 1876-of Major J. HERSCHEL, R.E., F.R.S., Deputy Superintendent 2nd Grade, in charge of Calculating and Printing Branches of the Computing 0ffice. 

(1.) I received charge of the office on the 21st March last from Mr. W. H. Cole, M.A., whose report, printed in the A ppendix to the Superintendent's Annual Report for 1874-75, reviewed the opera. tions of this Office, as well as those of the Drawing, Photozincographic, aud Printing Offices, for the previous 17 months, from May 1874 to September 1875 inclusive.
(2.) With regard to the work done during the interval prior to Mr. Cole's departure on furlough, I have to rely on the monthly reports : including that the present account covers the 13 months from October 1875 to October 1876.
(3.) Mr. Cole's departure was somewhat sudden, and as it was followed a fortnight later by that of Colonel Wallser, the charge would have proved $n$ very onerous one had the superiuteadence of all the above branches devolved upon me without preparation. Colonel Walker was therefore pleased to esparate the Drawing and Photozincographic Offices and to place these under Captain Thuillier, R.E., who was to officiate for him as Superintendent; leaving the Computing and Printing Offices to my care.
(4.) Within a few days of my accession to office the preparation of the usual monthly report directed my attention to a system of diary keeping which had been commenced under orders from the Superintendent about 15 monthe before, the object of which, as I understood it, was to obtain the actual cost of any individunl piece of work, as in a factory. I could not learn that this result had ever been oltained, although the time of each workman was duly accounted for. In endeavouring to carry out what appeared to be the intention, it became evident that in the absence of any indication what special work was to be the subject of particular estimate, a very elaborate specification of details was necessary. This presented a serious difficulty, to provide for which would require a closer supervision than I could give. The only practical eacape seemed to be to obtain-at any rate at first-the relative cost of classes of work. I accordingly classified as soon as I could do so, and very soon obtained what seemed a satigfactory result, which I introduce here as a guide to the order which will be observed in this report. It is necessary however to remark that, as there is nn annual periodicity about some kinds of work, is would be premature to draw very close inferences from so partial a piece of atatistics, which is in fact on trinl. On the other hand there is reason to hope that, as each individual concerned can see in the monthly statements (of which the table shows only sum totals) the actual cost in rupees of his share of the several kinds of work on which he has been nccupied, there may grow into existence, with proper help, a sort of restraining judgment as to the worth of it.

Tubular Statement of Cost in Rupees of different Classes of Work done in the Computing Office.

| Clabsba |  |  | July. | August. | September. | October. | Norember. | December. | Average per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1Records | $\ldots$ | 10 | 5 | 5 | 17 | 12 | 23 | t |
| 2 | Computations | $\ldots$ | 662 | 301 | 50 G | 463 | 439 | 514 | 22 |
| 3 | Accounts | $\cdots$ | 47 | 45 | 33 | 37 | 43 | 87 | 2 |
| 4 | Returns | ... | 62 | 298 | 74 | 118 | 69 | 78 | 5 |
| 5 | Supply | $\ldots$ | 46 | 88 | 131 | 104 | 107 | 68 | 4 |
| 6 | Press copy | $\ldots$ | 626 | 657 | 786 | 633 | 434 | 323 | 25 |
| 7 | Press proofs | $\ldots$ | 377 | 220 | 225 | 304 | 348 | 263 | 13 |
| 8 | Charts | ... | 184 | 132 | 31 | 21 | 159 | 129 | 5 |
| 9 | Meteorology | ... | 34 | 35 | 46 | 52 | 74 | 14 | 2 |
| 10 | Library | $\ldots$ | 18 | 9 | 8 | 8 | 7 | 1 | 1 |
| 11 | Correspondence | $\ldots$ | 94, | 56 | 54 | 60 | 39 | 17 | 3 |
| 12 | Stations | $\ldots$ | 33 | 37 | 65 | 37 | 178 | 58 | 8 |
| 13 | Lonvo | ... | 58 | 162 | 181 | 210 | 70 | 74 | 6 |
| 14 | IIolidny |  |  | 71 | 58 | 88 | 76 | 484 | 6 |
| 0 | Miscelínneous | $\ldots$ | 116 | 171 | 164 | 95 | 72 | 44 | 3 |
| Totnls |  |  | 2367 | 2367 | 2367 | 2247 | 2127 | 2127 | 100 |

It will rendily be undorstood that the designations of olasses here given are often mere catchwords

[^9]donoting a varioty of itema.
I now proceed to take the above clnsses in order aud will use the opportunity to indicate in some detail what thoy represent.
(5.) Records. In no department of the public serrice probably aro records more valuable than in that of Surrey. They represent money sunk or funded as the case may be, and the strictest precautions hare always been taken to guard ngainst loss or dostruction. The bost safeguard no doubt is prompt publication, but this is not alwnys possible. Our progross in this direction is however undoubtedy making a large mass of MS records rank chiefly as memontos of those who wrought thom. Our museum of these is maintained and must continue to be maintained so long as field records continue to be amnually or from time to time received. Part of the work under this head relntes to the exnmination, indexing, paging, cataloguing, \&ce, of these later additions. The gradual accretion of MSS since the present accommodation was allotted has become a source of some difficulty and anxioty; and the Rocord Room and Library alike demand study to prevent their becoming crowded.
(6.) Computations. It appears desirable to restrict this class as much as possible, and further to subdivide it, with $n$ view to facilitate the desired apprnisement of different kinds of worls. Having regnrd to the natural current of operations it is not dificult to see what the various subclasses should be. The folloming have been laid down as guides for the computers in preparing their eeveral montlily accounts of work. Subclass (a) clains all computations directly connected with named series: subclass (b) comprises levelling and tidal reduction: subclass (c) astronomical and pondulum work: subclass (d) is devoted to tho reductions of associated series, and referring to the timehonoured plan of this Surrey, may fitly be known as the gridiron subchass. I must pass orer (a) for the moment. In (b) I am not nware of anything requiring specific mention haring been done during the twelvemonth. In (c) a good deal of work was done in the early part of the year in the course of preparing the pendulum operations for press, but I am not in a position to deacribe it precisely. In specifying the work under (d) it will be necessary for me to go more into detail.
(7.) Three large arens of triangulation, which have been frequently mentioned in these reporte under the names of North-West Quadrilateral or N.W.Q., South-East Quadrilateral or S.E.Q., and North-Enst Quadrilateral or N.E.Q., have to be considered. Of these the first deals with 8 series, the second with 6, and the third with 15 . Thus the three Quadrilaterals incorporate 29 distinct series of triangles, ench of which omis a name aud $u$ set of records and of computations. They form as it were three quarterings of the grent Indian Surrey shield. The fourth quarter-the SouthWeat Quadrilateral or S.W.Q.-need only be mentioned : we have not anything to do with it here. It will eventually consolidate 5 or 6 other series with those already mentioned.
(8.) There is little to be snid here about the N.W.Q., which has already been frequently described, further than that the reduction of it embodied most of the experience which has guided us in subsequent oporations of that naturo. Nor is it necessary in the present connoction to say much of the S.E.Q., the reduction of which was reportod last year as nearly complete. The work which followed theroupon mill find its place in another page. Of the N.E.Q. reduction also it would be easier to say little than much; but as this is a report I must briefly describe its features.
(9.) It was originally intended to restrict this job to those old series running north and south; between the meridians of Delhi and Calcutta, which together with a chain of triangles skirting the Himalnyas and another along the parallel of Caleutta (or nearly so) gave, no doubt, the first quaint suggestion of a gridiron. These series have always had rather a bad reputation as compared with the nobler ones of more recent days, and in desigaing the programme of successive reductions they were assigued a third place so that they might rest upon, instoad of offering a weak support to, their strongor neighbours. This was woll; but to the eastward of these again lay 4 connected series which, being of the higher order of merit, would in this way run a chance of boing unfairly dealt with. These were ther eforeincluded in the N.E.Q. echeme; which, in ite extended character, presents 49 equations of condition.
(10.) There is one poculiarity about this third gridiron reduction which requires special notice. The first and second are indepeudent bodies of triangulation, having nothing in oommon except at the corner Where they meet: butas at this corner they have one aide of one trianglo in common, upon which each may be oonsidered as based, the two rigid wholes become in effect one rigid wholo. In the vacant areas forming the other two quarters the triangulation occupying them has to bo adjusted. Thus the N.E.Q. may be considered as a pieoe of triangulation which bas to conform to a mach larger number of fixed points. The anme will be the case in the fourth quarter. This in no way adds to the dificulty; on the contrary the immedinte effect is to remore two equations, one of which would link together many of the others in such $n$ way as to increaso the trouble of solution of the ultimate normal equations. 'I'lis last cperation forms howover so small a portion of the total labour th: : it would be a mistake to lay much atreas upon
it. The great mass of the work is to be found in the formation of the coefficients, and every coefficient saved represents there an economy which far outweighs what would result from its mere absence in tho final equations. If I am not mistaken 90 coeflicients out of 641 are thus saved, as a direct consequence of the N.E.Q. being based upon the already completed N.W.Q. and S.E.Q.
(11.) In the annexed table I have endeavoured to present some statistica of the three quadrilateral reductions. The last two liues require $n$ word of explauation. The more entangled a set of given conditions are inter se the more do they react the one upon the other. Every such renction gives rise to $\pi$ term (with its coefficient) in the ulim:te equations between the indeterminate factors-also called above, and in the table, normal equations. The avernge mumber of terms in these equations is therefore, roughly, a measure of the entanglement, or as we may say, of the interdependence of parts. Again, as the purts so dependent on ench other consist in every cuse of a number of triangles, and therefore of angles, the average proporion of the latter is some measure-probably a very rude one,-of the wenleness, as the other is of the strenglh, of the framework considered as a whole. The inference is not entitled to much weight, but it has some small interest.

GRIDIRON FUNCTION TABLE.

|  |  | N.W.Q. | s.E.Q. | N.E.Q. |
| :---: | :---: | :---: | :---: | :---: |
| Number of Associnted Series |  | 8 | 6 | 15 |
| " Circuits ... ... ... | $\ldots$ | 5 | 3 | 12 |
| " Circuit triangles | ... | 549 | 277 | 673 |
| " Non-circuit triaurles | ... | 268 | 169 | 120 |
| ", Equations of Condition ... | ... | 23 | 15 | 49 |
| " - Normal lipuation Coefficients | ... | 329 | 165 | 551 |
| " Products forming the sime... | ... | 40,050 | 16,664 | 50,962 |
|  | $\ldots$ | 23,204 | 9,784 | 29,132 |
| A vernge terms per normal equation ... ... | ... | 184 | 11 | 111 |
| " angles concerned per term | ... | 183 | 151 | 139 |

(12) A large part of the prelininary calculations for the N.E.Q. had been prepared prior to Mr. Cole's departure. The enstern serios were the least advanced, as their inchision had not been decided upon. I was enabled however to push ou with the calculation of coeficients, and afterwards with the solution of the equations, of the ten western circuits. The elimination has been earried as far as the 38 th equation, where it has been stopped for the present. Every equation as formed, and every elimination ns completed, has been subjected to some 1est. For one or two of these I am indebted to Baboo Cally Mohun, who is very expert in devising these checks. That I may not be understood to imply that the introduction of checks wiss at all a novelty 1 should explain that the great increase in the number of equations rendered it impossible to alopt the arrangements of the $\mathcal{N} . W . Q$. and $S$. $E$ Q ; and that in devising others more suitable to the altered circumstances, different fucilities presented thomselves for securing checks. These were of course taken advimitage of.
(13.) Having been instructed to curtnil calculation as mach as possible-in view of the inferior character of the tringulation-l have given my closest attention to this point. It is often a matter of extreme difficulty to judge rightly what measure of nccuracy is sufficient at each stuge of a series of numerical operations, in order to secure a satisfactory conclusion. On the one hand, too much caution may entail fruitless labour ; on the other, too much hardihood may lond to failure. Perhaps I have erred on the latter side. Should the event prove this, I shall be the less exousable through having had two previous sets of computation by which to be guided. At the aame time there is an uanaoidably greater risk of sensible error in what mathematicians call a frst approximation, where the quautities to be found are (as in the N.E.Q.) comparatively largo.
(14.) We may now return to subclass ( $n$ ) of art. 6 , which includes all computations directly con. nected with named series. The extension of the N.E.Q. to ivclude the Assam, the East Calcutta, the Brahmaputra, and the Eastern Frontier necessitated the revision of the original computations of these suriea, portions of which, thongh the observations were taken with good instruments by good observers, had become in some sort obsolete through the introduction of better clements of origin and more refined mothods of prelinsinary trentinent. They wree in part recomputed, and the results were adopted in obtaining the errors to be dispersed by the N.E.Q. Reduction.
(15.) A large amount of secondary triangulution belonging to the several series forming the S.E.Q. has been corrected, revised, or where necessary recalculated, upon the basis of the fiually corrected principul elcments of that section.
(16.) The height deductions along several of the meridiounl series of the N.E.Q. have been gone over, in nuticipation of their actual requirement for publication along with the other resulte on those series, in order to supply the best availuble materiuls in Oudh, Kohilshand, and N.W. Provinces, for the level sheets in course of compilation.
(17.) For the preparation of level charts the Drawing Office has acquired from various sources daja some portion of which is scarcely inferior to that supplied by the G.T.S. levelling, and is connected with it and with occasional tower stations of the series which traverse the N.W. Prorinces, Oudh, and Bengal. The trigonometrical (or signal as distiuguished from staff) levelling, obtained by vertical angles measured with the theodolite, though far less trustworthy than spirit (or etaff) levelling is still good enough to be valuable when connected with the more reliable data. Accordingly it falls to this oflice to harmonize the two. The adjustment which is requisite in any such case may be effected either by a direct appeal to the method of least equares or by the application of a discretionary method of allotment. I was not aware that the former had ever been given a conclusive trial and therefore applied it in one or two of the cases which arose as above. I have since understood that the method has been tried, and discarded es being too refined for its purpose. Under these circumstances there is no occasion to say more about it than that if there should hereafter be any desire to repeat the experiment the form into which the work was thrown may perhaps be found of use. It is one which I think applicable to almost any simple problem of dispersion of error by least squares, however numerous either the equations or the unknown quantities might be.
(18.) It has been usual to reckon Astronomical Azimuths as among the operations of a series. They are so, no doubt, if we regard only the fact that they are almost invariably observed by trigonometrical parties conducting the usual field operations. But considered as computations, the necessary connection disappears. In classing these it seems best to assign them a place along with other geodetic measures. There are 42 astronomical azimuths at stations of the S.E.Q.: some of these have been computed now for the first time; others have been examined and where necessary corrected; and abstracts for press have been completed, or drafted. Of the above number 15 were observed subsequent to 1863 , when a different method of registering level readings was introduced. The reduction of these last has received very careful attention, in the hope of ascertaining the requisite facial corrections as well as those due on account of error of verticality of of the azimuthal rotation axis. Owing howerer to the necessary ignorance of the state of the pivots at different periods there appears to be very little prospect of determining the former, and in that case it will be necessary to combine observations taken "face right" with corresponding ones talion "face left", the mean of which will be cleared of the facial errors. This amounts to much the same as measuring on 5 zeros with 10 microscopes, instead of on 10 with 5 .
(19.) In connection with the subject of observed azimuths I may mention that an endeavour has been made to nscertain the general effect of the final reductions of the N W.Q. and N.E.Q. trian* gulations upon the disagreement of geudetic and astronomic azimuths in those quarters. For this purpose Baboo Gunga Pershad has prepared, with great care, an abstract of all astronomical azimuths, showing in the case of those which admit of it, the final, and in all others the preliminnry, disngreement. This is not the first time that a collection has been made, but as it has never-before been poesible to approach so closely to the facte, the abstract repays study. Of the 179 observed azimutha, the final reductions enable us ao far to compare provisional discordnnces with fual discordnnces in 85 cases. Of these 85, the azimuthal correction has in 62 cases the sign proper to reduce, and in 23 to increase the discordnnce. Of the 62 cases in which the sign is proper, the numerical magnitude is often too great, and sometimes (in 12 instances) sufficient to produce an increased discordance with changed aign. Thus, if we consider magnitude only, there are 50 decreases against 35 increases. That this is obviously the result which was intended when, by Colonel Walker's direction, the fundamental azinnth of origin of the Survey was changed-afler an investigation very similar in some respects to this-by $1^{1 / 1}$, scarcely needs more than recognition : a general diminution of provisional discordances was a necessary consequence. The interest does not lie here, but in the further question, A part from this constant correction, is there evidence of a diminution which may be fairly adduced ne confirming the discipline to which the triangulation has been subjected? The answer is I think nffirmative, but hardly positive. In some cases there is a marked appearance of correction; but, remembering that however perfect the triangulation might be, there would always remain the uncertain discordances caused by local sttraction, this is incunclusive. Lastly there is some indication, in the outstanding preponderance of negative over positive discordances, that the change of fundamental azimuth was rather too amall than too great.
(20.) The reault on the whole is this. The absolute attraction at Kaliánpur is almost conclusively proved to cause an azimuthal deviation of somewhat more than $+1^{\prime \prime} 1$, and this quantity has been allowed for in determining the influence of local attraction at all the other stations yet rached by the final reductions. When the N.IV.Q. and S.E.Q. are published, there will be availuble 85 determinations
of deviation, which hnve perhaps $\mathfrak{n}$ better claim to rank as absolu/e than nny yet given to the world. Ihere remain 94 others to which the continued building up of the frnmework will extend a like character. Those in the extreme sonth, where the effect of lateral attraction on azimuthal nzimuth censes, must be looked for, in this connection, with exceptional interest. We may now return to the more prosaic subjects of this report.
(21.) Accounts. There is but little to be said about these. As a class it includes all time devoted to monthly pay bills and to the keeping of pay, contingent, and map accounts. These have been conducted by Mr. Wood, whose management of them has been satisfactory.
(22.) Returns. This class includes indents, estimntes, monthly progress reporta, stock nad expenditure, and work of that character. It is of more importance and requires more experience, and when as in August the indents on England are under consideration the cost is exceptional. Some of the principal items are prepared by Mr. Wood. 1 annex a list.

## Annual Report, materials for:

## ., Estimate of Stores for Iudent : <br> " Indeat on Englund :

List of Books and Periodicals required for the year :
Statement of Receipis and Issties of Stores for 5 years, and of Balances:
Heview of Expenditure of Stores:
Monthly Progress Reports, in detail: " Statement of Cost of the Department:
Stationery and occasional Indente:
Stock and Expenditure Lista of printed Forms.
(23.) Supply. Under the head of supply I reckon the preparation of tranacripte or abstracts from the professional records to meet the wants of field parties and other applicants; as also all work in connection with applications for information of whatsoever kind, by other offices. This is often a source of trouble, if not of actual waste of time, owing to the vagueness of the demand; but the sleady increame of our publications enables us to meet a continually larger proportion year by year by the despatch of a Preliminnry Chart, a Level Sheet, or a Syuoptical Volume. Such supplies being matter of business only make hat little show in the scule of cost, compared with their utility. During the past year, in addition to MS data supplied to about 20 officers, nome 750 despatches of maps, clurta, books, and forms have been made. Under this head should also be noticed-as directly connected with the extemsion of the supply of materials-the compilation of a revised list of mups and charte published at Head Quarters. This we hope to be able to priut. Meanwhile a copy in MS has been supplied to the Surveyor General.
(24.) Press Copy. If we may judge from the monthly cont of this class, it stands first in importance. And when it is considered how very long and sometimes devious a clisin of procedure is tracealle from the early meusurements of angle, through the preliminary calculations-revised perhaps as knowledge increased-up to the final stages by which the independent work of numberless hands has been welded into one consistent whole; it is not surprizing that it rarely happens that any singlo page of the origimal records can be put into the printer's hand. Not only this: the compilation of what is suitable for pulicication is something very different from selection and transcription. To the calculator it is very much what composition is to the writer, only that it must hang together by much more inelastic links. There may be no wenknesa, on his part-no mistakes, no overaights. Thus it is really the case that the preparation of press copy occupies a very large proportion of the computers' time. Where possible-and it very often is possible-the later stages of calculation are 80 couducted as to form this material. But a considerable part of what is to be printed must be compiled. Of this kind are alphabetical and other synopses of results, eapecially of secondary triangulation. Alphabetical arrangements are generally troublesome in proportion to their utility, and first drafte have commonly to be revised and rearranged before they are fit for the compositor. And then they must be compared with the original materials. Mere transeripts do not require this, but compilations take so much more time to check that it is unadvisable to reserve the comparison until the matter is in type. A great part of the expenditure under this liend is to be nccounted for by the necessity of revising part of the copy for the N.W. Himalayan Secondary Trinngulation. It must have been a terribly tough job to prepare it at all—and I believe Mr. W. Todd is entitled to much of the credit of it-but when it came to be printed it hung on the compositor's hands too heavily and I dirccted what remained-some 200 pages of printed matter eventually-to be transcribed. There was also some revision of the orthography of uative names at the same time. This was in Mr. Wood's hands at first but afterwards in Mr. Peychers'.
(25.) The synopses of secondary triangulation of the $\mathbf{G}$ series of the S.E.Q. (which likewise form press copy) bave becu continued and are now complete. Recomparison is required in one ease. l'ress
copy is otherwise rendy for the whole of the Syuoptical Volumes of this Section, and these are in course of printing.
(26.) One other kind of press copy may be noticed here. A good denl of letter prese now accompanies numerical charts, both those called "preliminary" and those devoted to levels. The printed matter is either put upon the chart before it is photographed, or accompnnies it as a pamphlet. In either case the Computing Ofice is answerable for its being properly printed, and to a certain extent for what is printed. In the case of charts such as the level sheets, which are compiled in the Drawing Ofice, my responsibility was limited. The letter press accompnnying 8 of these, prepared by Mr. Atkingon, has boen printed in pamphlet form. Those which had been printed in earlier years, at intervals, were of different patterns, and 1 was a good deal perplexed which to adopt. Foreseeting a run of the same kind it seemed worth while to form a good pattern, as these typographicnl details are otherwise worrying. There is now a cortnin uniformity nhout these which I hope will prove satisfactory. The manner of priuting upon preliminary charts has ulso varied n goud deal, necording to circumatances, from time to time; aud I have eudeavoured to incorporate the best parts in those which have passed through my hands; but there is still roon for improvement, ns my reluctance to make any changes has only been overoome with much hesitation. I beg to bring to notice the prelinimary charis of the Ramuad and Eastern Frontier Series, 1874-75, the typography of which was arranged under my instruotions by Mr. Wood.
(27.) Press Proofs. It will be lard to find angthing interesting to say on this very dull subject. And yet so much harm, as well as nungrance, directly results from misprints-to say nothing of the merely mathetic satisfaction in good printing-that it has a certain claim of its own. The subject stands third in order of cost; but as a great part of the reading, comparing, and correcting of proofs is done by the less highly paid members, it does in fact occupy a larger sliare of the time and labour of the office than can be done justice to here. I therefore take occasion to express my full recugnition of the resulta of careful traiuing which has made it possible for printing of a really creditable order to be turned out almost wholly by Natives of this country. And in saying this 1 by no means underrate the critical supervision exercised by Mr. Peychers, on whose vigilance I have been able to rely more than I could have expected. Press proofs upon and accompanying preliminary charts have been dealt with almost entirely by Mr. Wood, who in this as in every part of his multifarious occupations, has shown both the desire and the capacity to give effect to my instructions.
(28.) Charts. The separation of the Drawing and Photozincographic branches, from the Calculating and Type-printing branches, already mentioned as having taken place early in the year, drew something of a line defining the obligations of the latter in respect of charts. The only ones with which we were concerned were those for which there was corresponding type-printing. I aneer a list of these:-

N. W. Himalaya Degree Sheeta, Index Map<br>Do. do. Nos. 1 to 21 incl.<br>Eastern Frontier Series Preliminary Chart 187.4-75<br>Rimnád Longitudinal Series do. do.<br>Jodhpur Meridional Series do. do.<br>N E. Quadrilateral Extension, Skoleton Map<br>S.E. Quadrilateral, 6 Series, $1 \not 4$ Plates.

Heference has already been made in spenking of press copy, to the numerical data accompanying what are known as preliminary charts. These are drawn by the survoy parties nad contain, partly upon the face and partly in attached MS, the numerical resulta of the provious field-senson. If pobsible the MS portion is set up in type and an impression placed upon the chart before it is photographed. If the arailable epace is insulficient the matter in typo is separately printed and attached in pamphlet form. It will readily be understood that the Computing Oflice is in this way to a certain extent responsible both for what appears upon and with the chart-not in respect of its numerical accuracy, which is provisional, but in regard to its general harmony. This gives rise to an iudiapensable scrutiny by which errors of minor consequence are sometimes detected. This is particularly the case with the orthography, descriptions, and nomenclature of atations which appoar both upon the chart, and in the added matter-points in which we cannot expect perfect manuseript. It is not easy to define very clearly what share of the work thus indicated,-especially what share of the press work-is to be reckoned under the head of Charte. It would seem to claim everytbing which goes to the making of them, but obviously other clasees have some claims on the process too.
(29.) There is one point in connection with this aubject which ought to be noticed in a report. There is a steady demand-and I an bound to almit a quite legitimate ono-on the part of the Drawing Office, for type-printod titles, foot-noten, \&c., required for mups which are to be photographod.

These used to be attached in the Photo-Printing Office, but as they took the place of printing which would otherwise fall to the draughtsman, I suggested that it would be preferable that this should all be done in the Drawing Office, not only because it was proper that a map should be handed to the photographer complete, but because it seemed likely that by the exercise of a little foresight the petty demands on the printer would become condeused into larger and less frequent ones. This has I believe been found to be the case, and it is clear gain; because printed slips though a boon to the draughtsman are a drain on the printing power. They have long since been felt to be so much more wasteful than if the Drawing Office had its own printing appliances, that as long ago as August of last year- 15 months ngo-an emergent indent for I think $£ 50$ worth of plant was despatched through the Goverument of India to the Secretary of state. It was sanctioned; but to this day the type \&e. have not been received, any more than have our own regular indents of a somewhat earlier date been met as yet. A partare I believe on their way-vid the Cape.
(30.) Meteorology. The usual observations hare been recorded without interruption, and reduced: montbly abstracts hare been communicated to the Meteorological Reporter to the Government, N.W.P. The usual table of monthly means and a table of wind velocities as furnished by a self-registering anemometer on the Rasevi Memorial Clock-Tower are appended. The wind directions indicated by the same are also self-registered and the sheets are available forinvestigations of the influence of barometric tides on the lower air currents; but the office is too full of work to allow of such being undertaken excopt by special desire of the Meteorological Office. Observations for time have been frequently taken, by Mr. Peychers, for regulating gunfire at Mussooree and the Basevi Clock at Dehra, as well as for chronometer rating.
(31.) Library. A library is nothing without a catalogue, and a catalogue is next to nothing which does not serve its purpose well. The only catalogue we possess is one which having outgrown the fromework constructed by me in 1863 for a comparatively modest stock of books, calls urgently for reconstruction. The subject hos been present to my mind for months; but though I have a well defined idea of what has to be done the large amonnt of writing which it will entail has prevented much progress. As a special memorandum on the libraries in public offices was circulated by the Government of India not long since, no apology is necessary for noting briefly here what occurs to me on the subject. The foundation of the Catalogue of the British Museum Library, as well as of that invaluable annual publication the "English Catalogue ",-copy of which from 1831 to the present time 1 happen to possess-is an alphabetical arrangement by (1) author's name (2) leading word, where the work is nnonymous or only edited. Cross references are most uneful, but they must be quite subordinate, and must not interfere with the plan, which consists in haring one full and complete entry for each work, in its alphabetical place. There must be ample room for freeh entries, but it is not desirable that these should bo currently made, unless the custodian has some literary qualification. A day-book for current acquisitions provides sufficiently for the catalogue being properly filled up from time to time.
(32.) Having perceived that such a catalogne must be prepared if posaille I atopped further entries in the existing clasdified catulogue, and instituted a diy-book. This is a current account of books lent as well as received, nud has been kept up since. It supplements, on the Cr. side-if it does not render unnecessary-the file of receipt notes; and on the $\mathrm{Dr}_{\text {r }}$. side it shows or should try to show the tille and description, in full, of new acquisitiona, for use in bringing up the cintalogue. I may add that this latter mny possibly be crented, if $I$ am allowed time, without the resonrces of the office being drawn upon otherwise than for printed forms.
(33.) I hove nlready remarked upon the crowded state which the Library and Record Rooms have reached. This partly arises from the constant influx of printed sliects of the Volumes of the Operations. 'The anmual out-turn of the printing office is partly represented by 35 to 40 reams of double roynl, of professional matter alone, all of which has, for a time at lenst, to be stored in one or other of the rooms of the office. 'I'his mass of paper occupies much necommodation, and tends to oust both records and books. If funds were available I should propose the substitution of iron racks of greater capacity for the present somewhat incommodious wooden stages, especially in the library, where I think space would be gained-and that withont risk from white ants-by following tho outline of the room inatead of occupying its central area. The racks which have been erected in the observatory are excellent modela-though of course they would require to be differently designed for a library.
(34.) Correspondence. This speaks for itself; but it does not include correspondence in conneotion with the preservation of stations, next to be described.
(35.) Stations. The business and correapondence connected with the protection of surrey stations has for several years been conducted by Mr. Wood, under the direct control of the superintendent. Withont at all desiring to interfere with an arrangement which, if it absorbs to an uncertuin extent the atteution of his principal assistant, yet at the same time relieves the officer in charge of much responsi-
bility, it nevertheless appenred precarious to leave the entire knowledge of the detnils at the mercy of cvents. Mr. Wood accordingly, by my direction, drew up an account of the routine, from which the following is condeused. There nre three forms in regular use viz:-A, Custody Recoipts; B, Annual and Distriot Lists; C, Finnl District Lists. Custody Iteceipts are taken by executive officers from village officials at the time of linnding over stations into their charge, and are trinsmitted to Head Quarters, where they are filed as rouchers. I do not gather that they serve any other purpose, in thomelves, as they are annually incorporated in the lists 13 . These are prepared by the executive officers, in the first instance, irrespective of districts, as Annual Lists; and from them are compiled here, on the abme forms, the District Lists, which are sent out to the civil officers, who revise and return them with their report on the condition of the stations which they are thus officially made cognizant of as existing within their jurisdictions. From one cause and another these district lists are at frat incomplete and erroneous when eent, but when thus revised they ultimately supply all the requisite means for preparing the fibal lists $C$. These are then transmitted, along with blank forms, and the district officers, taking the final lists as guides, report anmually on the spare forms, atating in an appropriate column the actual condition of each station, and if necessary the estimate of its repair.
(36.) The object of this procedure is clearly to secure $a$ complete transfer of all stations to the care of the cisil administration of the districts in which they are situnted, and to provide for their continued preservation. 'lhe latter purpose is effected by an allotment from Imperial funds. An annual expenditure was some years ago sanctioned which at that time averaged 4 Rs. per station. The incrense in the number of stations so transferred, without a corresponding increase in the allot. ment, has lowered this avernge; but it bas been found possible, so far, to defray the requisite expenditure.
(37.) There are now 313 of these Final District Lists, disposing of some 2725 principal stations, leaving perhaps 30 districts in which it has not yet been possible to get beyond the preliminary stage. To keep the system up, and to arrange for the propor expenditure, entnils of course much correspondence, and requires on Mr. Wood'e part a very extensive knowledge of his aubject.
(38.) Although the preparation of the Final District Lists maunged in this way provides for the gradual rectification of local information regarding the positions of the severnl stations, it is I think a pity that it has not been made a means of obtaining the veruacular names of localities epecified in the descriptions. This department is fully alive to the importance of setting a good example in the matter of orthography in ite publications, and it might get much help in the annual reporta from districte, were the spelling in those more attended to on the spot.
(39.) In close connection with the preserfation of known stations, is the recovery and identification of old ones which have been lost sight of. Formerly-I am referring to the enrly days of the Survey-it seomed the natural fate of a station to die out and lenve no siga. I remember one which had been thus allowed to pass out of existence for half a century, and its site only was recovered by digging about in $n$ likely part of a ploughed field. Some disappear unaccountably, while sometimes later operations re-establish a station sensibly but not identically the asme as an older one. All euch incidents have-since Colonel Walker placed the preservation of Trigonometrical Survey stations on its present footing-been carefully noted in a book devoted to the purpose.
(40.) Peleting Office. The tabular analysis of monthly cost which bas now been gone through does not include expenditure on printer's staff. That part of it which has been assigned to press proofs should be alded to the cost of the printing establishment proper, if it were desired to estimate the cost of the printed matter published here. It would no doubt be possible to obtain in this way a proportional estimate of the cost of composing and correcting a page of type. But to extend this estimate to printed pages would involve a consideration of the number of pages, and would field a result of doubtful accuracy. Morcover it would leave out of consideration everything connected with material and plant. I shall not therefore veuture upon this, but will merely givsa continustion of the usual statement of out-turn.
Year.
$1865-68$
67
68
69
70
71
72
73
74
75
76

| Pages composed (foolscap size). 377 | Pages printed (all sizen). 53 thousand |  |
| :---: | :---: | :---: |
| 756 | 93 | " |
| 641 | 127 | " |
| 697 | 165 | " |
| 693 | 106 | " |
| 819 | 235 | " |
| 1143 | 241 | " |
| 1420 | 273 | " |
| 1220 | 888 | " |
| 1319** | $373^{\circ}$ | " |
| 1179* | 849* | " |

- Averages for a twolvemonith.

The falling off in the last year is due to severnl causes－among which must be included my inexperience as a printer．In the early months the out－turn was very small，being chiefly professional matter of unusual hinds，and lelterpress containing a good sprinkling of mathematical demonstration．Later on there was dificulty in composing well from the draft of the N．W．Himalaya Degree Sheets， as has been already explained．But it is needless to trace these fluctuations minutely，since out－turn must freyuently depend upon cnuses begond control．I should however mention that the severe iliness of our printer Mr．O＇Connor，which deprived the office of his services for 6 weeks，and the failing health and ultimate dealh of our best pressman－events which thew a severe increase of reaponsibility on Baboo Gunga Pershad who was euperintendiug at Dehra during the time－cannot， 1 think，thanks to his exertions，be held to explain the decrense．
（41．）Mr．O＇Connor has since talen sick leave and the charge of the printing establishment has devolved upon his chief compositor Nurbeer Singh，who carries on the work eurprizingly well．I have also been fortunate in replacing the pressman satisfactorily．
（42．）I cannot close this report without an expression of regret that the close of this year will bring round for the second time the half gearly period when clnins to increase of salary are considered， without my being able to submit any recommendations：not because none are worthy，but becanse retrenchment is ordered．I have no alternative but to cinim for those under mo the recognition which I myself tender them－of thauks for services faithfully performed．

## Mean Velocity in miles of the winds which blew at Dehra during 12 months of 1875－76 for each hour of the day．

| Civil Hours． | $\dot{8}$ 8 8 0 0 |  |  | $\stackrel{\rightharpoonup}{5}$ 呙 － | 苞 | $\begin{aligned} & \text { 运 } \\ & \text { 式 } \end{aligned}$ | 安 | $\dot{\otimes}$ | － | 官 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to | 1．35 | $2 \cdot 88$ | 2.58 | 1．50 | 2.21 | $2 \cdot 74$ | 3.47 | $2 \cdot 4.3$ | 2.05 | 1.43 | $1 \cdot 32$ | $1 \cdot 83$ |
| 1 ＂ | $1 \cdot 32$ | $1 \cdot 85$ | $2 \cdot 10$ | 1.12 | 2.14 | $1 \cdot 97$ | 2.57 | $2 \cdot 05$ | 1.62 | 1.07 | 1.55 | 1．3．3 |
| 2 ＂ 3 | $1 \cdot 06$ | I•69 | $1 \cdot 77$ | 1．46 | 2.00 | $2 \cdot 32$ | $2 \cdot 80$ | 2.10 | $1 \cdot 95$ | $1 \cdot 39$ | 1．35 | $1 \cdot 43$ |
| 3 ＂ 4 | 0.84 | 1.35 | $1 \cdot 8 \mathrm{t}$ | $1 \cdot 36$ | 2.03 | $2 \cdot 10$ | 1．67 | $1 \cdot 57$ | $1 \cdot 57$ | 0.79 | $1 \cdot 29$ | $1 \cdot 43$ |
| 4 ＂ 5 | 0.45 | 0.65 | $1 \cdot 58$ | $1 \cdot 25$ | 2.07 | 2.03 | $1 \cdot 57$ | 1－19 | 1．19 | 1.46 | $1 \cdot 16$ | 1.37 |
| 5 ＂ 6 | $0 \cdot 5$ | $0 \cdot 54$ | 1.48 | $1 \cdot 32$ | 1.97 | $2 \cdot 06$ | 1.53 | $0 \cdot 81$ | $1 \cdot 10$ | 1.29 | 1．06 | $\mathrm{I}^{1} 13$ |
| $6 \because 7$ | －． 58 | $0 \cdot 42$ | 1＊45 | 1.29 | $1 \cdot 38$ | 1＇58 | 1． 20 | 0.86 | $1 \cdot 24$ | $1 \cdot 25$ | 0.97 | 0.90 |
| 7 ＂ 8 | $0 \cdot 0.3$ | $0 \cdot 35$ | 1．3．3 | $1 \cdot 04$ | I＇ 28 | I＇29 | $1 \cdot 10$ | 0.95 | 1.43 | $1 \cdot 18$ | 1.06 | 0.40 |
| $8 \div 9$ | $0 \cdot 10$ | $0 \cdot 50$ | 0.94 | 0.93 | $1 \cdot 34$ | I 26 | $1 \cdot 17$ | $1 \cdot 81$ | 3.05 | $1 \cdot 4.3$ | 1.42 | $1 \cdot 07$ |
| $9 \% 10$ | $0 \cdot 23$ | $0 \cdot 65$ | 1.4 .5 | 1.00 | $1 \cdot 93$ | 2.00 | $1 \cdot 90$ | 2＇33 | $3 \cdot 55$ | $1 \cdot 46$ | 1.61 | $1 \cdot 27$ |
| 10 ＂ 11 | 0.42 | I 19 | $1 \cdot 84$ | 1.28 | $2 \cdot 21$ | 2.68 | $2 \cdot 23$ | 1.4 .3 | 3.20 | 1．57 | $2 \cdot 23$ | 1.63 |
| $11{ }^{112}$ | $1 \cdot 10$ | 1．46 | $2 \cdot 23$ | $1 \cdot 48$ | 2.38 | 3.29 | 3.33 | 4.62 | $3 \cdot 85$ | $2 \cdot 04$ | 1.71 | $1 \cdot 90$ |
| 12 ＂13 | 1．26 | $1 \cdot 52$ | $2 \cdot 77$ | 1.93 | 3.10 | 3.87 | $3 \cdot 80$ | 4．59 | 4．14 | 2.45 | 1.90 | $2 \cdot 0$ |
| 13,14 | 1． 13 | 1．81 | $2 \cdot 65$ | 2.04 | 3．28 | 3.90 | $3 \cdot 3$ | 4.55 | $5 \cdot 00$ | $2 \cdot 72$ | 2.19 | $2 \cdot 10$ |
| 14 ， 15 | $1 \cdot 35$ | 2．00 | $2 \cdot 81$ | 2.39 | $3 \cdot 72$ | $4 \cdot 29$ | $3 \cdot 6.3$ | 5．32 | $6 \cdot 10$ | $2 \cdot 69$ | $2 \cdot 35$ | 2.63 |
| $15 \times 16$ | 1.13 | 1.69 | 2．74 | $2 \cdot 68$ | 4.24 | 3.91 | 4.00 | $4 \cdot 73$ | 6.33 | 2.62 | 2.10 | $2 \cdot 17$ |
| 16 ＂ 17 | $0 \cdot 74$ | － 58 | $1 \cdot 03$ | 1.86 | $3 \cdot 72$ | $3 \cdot 71$ | 3.40 | 5－18 | 6.00 | $2 \cdot 14$ | 1．90 | 1.67 |
| 17 ＂ 18 | 0.52 | $0 \cdot 27$ | $0 \cdot 45$ | 0.4 .3 | 1.62 | $2 \cdot 71$ | $2 \cdot 87$ | 3.41 | 4.52 | $2 \cdot 17$ | $1 \cdot 26$ | $1 \cdot 10$ |
| 18.19 | $0 \cdot 74$ | $1 \cdot 46$ | $0 \cdot 97$ | 0.68 | 1－10 | 1.06 | $1 \cdot 20$ | 2.91 | $4 \cdot 4.3$ | $1 \cdot 17$ | 0.90 | 1.23 |
| 19 ＂20 | 1.06 | $2 \cdot 65$ | 1.97 | 1.29 | 1.24 | $1 \cdot 32$ | 1.57 | $2 \cdot 32$ | $2 \cdot 10$ | $1 \cdot 03$ | 0.81 | 1.40 |
| 20 ， 21 | $1 \cdot 39$ | 3112 | $2 \cdot 74$ | $1 \cdot 64$ | $1 \cdot 97$ | $2 \cdot 00$ | $3 \cdot 17$ | $2 \cdot 77$ | 1.00 | 1.07 | 1.00 | 1.47 |
| 211122 | 1．55 | $3 \cdot 12$ | 2． 32 | $1 \cdot 79$ | $2 \cdot 17$ | $2 \cdot 26$ | 3． 57 | 3.09 | $1 \cdot 35$ | $1 \cdot 10$ | 1＇19 | 1.73 |
| 22 ＂23 | I＇42 | 3.19 | $2 \cdot 87$ | 1.96 | $2 \cdot 38$ | $2 \cdot 61$ | 3.53 | 3.14 | $1 \cdot 65$ | $1 \cdot 79$ | $1 \cdot 19$ | 1.80 |
| $23: 24$ | I•39 | 3＇19 | 2.68 | 1.64 | $2 \cdot 48$ | $2 \cdot 26$ | $3 \cdot 63$ | 2.45 | I－85 | 1．28 | 1＇23 | $1 \cdot 73$ |
| Sunse，．．． | 21．68 | 38．13 | $46 \cdot 36$ | 35＇56 | 53．89 | 59＇25 | 62.44 | 68．61 | 70．27 | 38－59 | 3475 | 36．72 |
| Avarages，．．． | 0.90 | 1＇59 | 1＇93 | $1 \cdot 48$ | 2.25 | 2.47 | 2.60 | $2 \cdot 86$ | 2.93 | 1.61 | $1 \cdot 45$ | $1 \cdot 5.3$ |

MONTHLY Meteorological results taken from the Register kept at the Office of the Superintendent，G．T．Survey of India，Dehra Dún．

| $\begin{aligned} & \text { 吴 } \\ & \text { O} \end{aligned}$ |  |  | Now ${ }^{\text {a }}$ | －Ancomomeroom |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\rightarrow \boldsymbol{*}$ |  |
| $\begin{aligned} & \dot{x} \\ & \dot{B} \end{aligned}$ | －иопูалтр 7nenbaly 7805t |  | 家 |  |
| 花 |  |  |  |  |
|  |  |  | ＋ 0 |  |
|  | $\begin{aligned} & \text { 号 } \\ & \text { 邑 } \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \end{aligned}$ |  | －＂～～～ |  <br>  |
|  |  |  |  | कNTmoonono <br>  |
|  |  | 7\％as ： x 754 |  | ○かのローローロール <br>  |
|  |  |  |  |  <br>  |
|  |  | ＇ | $\begin{aligned} 0 \\ \hline \end{aligned}$ | $\rightarrow \infty \rightarrow 0 \infty$ <br>  |
|  |  |  |  |  |
|  |  | ＇s80as uo ：u！tit |  |  <br>  |
|  |  |  | －安商㐫 | नのONOにO日 <br>  |
|  |  | Gupuman <br>  |  |  |
|  |  | ？u！iod ${ }^{\boldsymbol{m} \theta}(\mathrm{I}$ jo ə．nip，iaduas． uvecu $S_{\text {IUPuo }}$ IT |  |  <br>  |
|  |  | －Sifpriom $\boldsymbol{H}$ <br>  |  |  |
|  |  |  jo oumquaduas <br>  |  | のトゥトのトローが <br>  |
|  |  |  | . | 突 |
|  |  | ${ }^{183040}{ }^{\prime}$ I | . | 今 |
|  |  |  |  |  － |
|  |  |  |  | 冬 |
|  |  | ${ }^{789300} \mathrm{I}$ | 倉密建 | 备 |
|  |  |  |  | 寝 |
|  |  |  |  |  |




XIII. Extract from the Narrative Report-dated 22nd December 1876-of Captain H. R. THUILLIER, R.E., Officiating Deputy Superintendent 1st Grade, in charge of Drawing and Photozincographing Branches of the Computing 0ffice.

In consequence of Mr . Cole proceeding on furlough, I was directed to take charge of the Drawing and Photozincographic Branches of the Computing Ofice and assumed their direction on the 21st March.

It is necessary to state that the return of work executed in these two branches is for a period of twelve months, and therefore it is not comparable with that submitted in the preceding report, which embraced a period of 17 months for reasons therein stated.

## DRAWING BRANCH.

## Annual Return of work executed in the Drawing Offlee, during the year ended 30th September 1876.

| Desceiption of Wonk. | Number of sheets or dingrains. |  | Scale <br> 1 inch <br> $=$ | Remange. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \vec{E} \\ & \underset{5}{5} \end{aligned}$ |  |  |
| Compilation. |  |  | Miles |  |
| Map to illustrate the report on the Pandit's route through) Grent Tibet in 1874. Slicets 1 and 2, with lill $\}$ shading. | 2 | ... | 16 | For Photozincography. |
| Index Chart to the Degree Sheets of tho N.W. Himalaya Serics ? triangulntion, with hill shading. | 1 | $\cdots$ | 24 | Do. Reduction to ${ }_{\text {a }}^{\text {a }}$ scalo. |
| Map of Havidar, and Mulluh's routes through Arghanistan $\}$... <br> \&i., 1873.74. | 1 | ... | 16 | Do. |
| Sheet No. 6 of Spirit Lerelled Heights..., ... ... | 1 |  | 2 | Do. |
| Do. ${ }^{13}$ Do. ... |  | 1 | 2 | Do. |
| Do. 19 Do. ... ... |  | 1 | 2 | Do. |
| Do. ${ }^{21}$ 21 Do. | 1 | $\cdots$ | 2 | Da |
| Do. " 23 Do. ... | 1 |  | 2 | Do. |
| Do. 25 Do. ... ... | 1 |  | 2 | Do. |
| Do. ${ }^{26}$ 26 Do. ${ }^{\text {d }}$ |  | 1 | 2 | Do. |
| Do. "27 Do. ... | 1 | ... | 2 | Do. |
| Do. ${ }^{28}$ Do. ... ... | 1 | ... | 2 | Do. |
| Do. " 40 Do. ... | 1 |  | 2 | Io. |
| Do. ${ }^{41}$ Do. ... | 1 | $\ldots$ | 2 | Do. |
| Do. 1142 Do. ${ }^{42}$... | 1 | ... | $\stackrel{2}{2}$ | Do. |
| Do. ${ }^{\text {45 Do. }}$ - .. | 1 |  | 2 | Do. |
| Do. ${ }^{53}$ Do. ... |  | 1 | 2 | Do. |
| Do. ${ }^{\text {b }}$ - Do. ${ }^{\text {d }}$ |  | 1 | 2 | )o. |
|  | 1 | $\ldots$ | 2 | Do. |
| Do. "1 Dehran Dín and Siruiliks with hill shading, | 1 |  | 1 | Do. |
| Do. $\quad \begin{array}{ccccc}\mathbf{2} & \text { Do. } & \text { Do. } \\ \text { Do. }\end{array}$ |  | 1 | 1 | 110. |
| Do. "24 Do. $\begin{gathered}\text { Do. Survey. ... } \\ \text { Final Charts. }\end{gathered}$ |  | 1 | 4 | D. |
| Great Aro Scries, Section; $18^{\circ} \mathrm{lo} 21^{\circ}$. | 2 | $\ldots$ | 4 | Do. Reduction to scale. |
| Calcutta Longitudinal Scries. ... ... | 3 | ... | 4 | Do. Do. |
| East Const Serics. | 2 | ... | 4 | Do. Jo. |
| Bilúspur Meridiounl Series. ... ... ... ... | 2 | ... | 4 | Do. Do. |
| Jabulpur Meridiomal Series. ... ... ... | 2 | $\ldots$ | 4 | Do. Do. |
| Bider Longitudinal Serics. .... ... |  | $\ldots$ | 4 | Do. Do. |
| Degreo Chorts of tho Nortl-West Himalnyn Triangulation. Miscellaneous. | 14 | $\ldots$ | 4 | Do. Do. |
| Examined and reported on 4.1 fuir original Maps of Kumaun and Garlhwíl, Knttrwar, Guzorat and Delira Dún and Simaliks Surreys. | $\cdots$ | $\cdots$ | $\cdots$ |  |
| Examined 113 proofs of Maps and Charts. ... ... ... | $\ldots$ | $\cdots$ | $\ldots$ |  |
|  | ... | $\ldots$ | ... |  |
| $\left.\begin{array}{l}\text { Prepared } 7 \text { professional and oflico forms on drawing and trans- } \\ \text { fer puper. }\end{array}\right\} \ldots$ | ... | ... | $\ldots$ | For Photozincograply and Zincography. |
| Prepared a trace on linen of the Assau Valley Iriangulation 1870.76. | $\ldots$ | $\cdots$ | ... |  |
| Prepared a trace on linen of country round the Chur Penk. Prepured an Index ('hurt of Trimingulation of N.E. Quadriln-) | $\cdots$ | $\ldots$ | $\ldots$ |  |
| Prepured an Index Churt of Triangulation of N.E. Quadrila- \}... teral enstern extmaion. | .. | $\ldots$ | $\ldots$ | For Photosincography. |
| Prepared 68 Figures of the sereral eeries contained in tho S.Li. ? Quadrilateral to illustrate G.T.S. Volumes. | $\cdots$ | $\cdots$ | $\ldots$ |  |
| Preparod 97 Dingrams and Deerriptions of Bench-Marks for Slects $N_{\text {of. }} 6,21,25,27,24,40,41,42,45$, and 66 of Epirit Lerelled JIeights. | ..' | $\cdots$ | .'. | The diagramis for Photozincography. and roduction to $\$$ acale. |
| Prepared tracinge for uee of rutions Olicers andil for record, ? and perforned other miscellaneous duties. ...) ... | ..' | $\cdots$ | ..' |  |

This Office has been priveipally engagod in the preparation of charts of triangulation, of which 27 have been completed, and of the series of Level charts, in which considerable progress has been made. Twelve of theso sheets have been completed and four are very nearly ready for the press.
The accompanying Index map shows the sheets that have beeu published. The map of Northern Afghanistan showing the results of the explorations of the Havildar and the Mullah, and that of the Pandit's surveys through Groat Tibet, both compiled under Captain Trotter's supervision, were completed early in the year, but circumstances of which you are awaro, hare provented the publication of these very interesting maps.

A large amount of miscellaneous worls has been done in addition, and I am glad to be in a position to say that Mr. Atkinson, the Chief Draftsman, conducts this small branch with much efficiency and enorgy.

## PHOTOZINCOGRAPIIC BRANCH.

The amount of work exccuted by this Office for the year ended 30 September 1876 is shown hereaftor under the heads of Cbarts, Diagrams, Forms, and Maps. This work may be briefly summarized as follows:-

109 transfers hare been made to zinc, 25,425 complete prints of maps and other subjects and 18,314 copies of Forms hare been struck off, besides the preparation of 126 silver prints.

The out-turn bears farorable comparison with that of former years, which can be seen by reference to the abstract given in the last report by Mr. Cole, and taking into consideration tho reductions which hare been carried out both in this and in the Drawing Branch during the year under reriow, I trust the returns of these small Otices will be considered satisfactory both in quantity and quality.

In the Photozincogrnphic Office Mr. Ollenbach continues to merit the good opinion previously expressed of his industry and supervision, while the subordinates in both branches have as a body worked satisfactorily.

Charts.

| Subject. |  |  | When published. |  |  | No. of copies printed. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jogi-Tílá Meridional Serics Chart, Final | $\cdots$ | $\ldots$ | October | 1875 | 1 | 369 |
| Sutlej Scries Chart, Fimal ... | ... | ... | November |  | 1 | 366 |
| North-Wost Eimalaya Serics, Degree Sheet 1-2, Find | $\ldots$ | $\ldots$ | February | 1876 | 1 | 370 |
|  | ... | $\ldots$ |  | " | 1 | 367 |
|  |  | $\cdots$ | March | " | 1 | 68 |
| Rámnád Longitudinal Series, Scoson 1874-75, Numerical | ... | ... | April | " | 1 | 68 |
| Eastera Frontier Serics, seuson 1874-75, Numerical | ... | ... | -ugust | " | 1 | 70 |
|  |  |  | Total | $\cdots$ | 7 | 1678 |

## Diagrams.



## M/mps.



Besides the foregoing, 12 Blue prints wers issued, and 126 sets of Silver prints ( 50 subjects) were prepared on the scale of the Indian Atlas for the use of tho Engravers and for Executive Officers.

# GENERAL REPORT ON THE OPERATIONS OF THE <br> <br> GREAT TRIGONOMETRICAL SURVEY OF INDIA, 

 <br> <br> GREAT TRIGONOMETRICAL SURVEY OF INDIA,}

DURING

1875-76,

Prepared for submission to the Government of India.

BY
J. B. N. HENNESSEY, ESQ., M.A., F.R.S., \&C., offg. SUPERINTENDENT OF THE SURVEY.


PRINTED AT THE OFFICE OF THE SUPERINTENDENT $C . T$ SURYEY. M. J. O'CONMOR.


[^0]:    
    PRINTED AT THE OFFICE OF the superintendent $C$. t. survey.
    M. J. ORCONNOR.
    1877.

[^1]:    $t$ Stationa aituated on low ground along the sea ronst.

    - Obtained from tho Crylon Connecting Serice, Ithe stations of which were umavoilably placed on amoll ialnula but
     disad:anluges.
    : The atithe of this seetion with une caception are all situaled on hills.
    § Un sund hills.

[^2]:    - As a matler of fact, one of Lieutennat Montgnmerie's nasistants (Mr. W. IT. Johnson) set up lis theodnlite on the aummit of a peak on the Clúngehenmo range and measured the regnired angley; this puiut is 20,666 feet above sea lerel.

[^3]:    Notr.-The errors of the Jorlhpur Sorirs nt ite junction with the Sutlej Series are as follows ; in Latitude $=-0^{\prime \prime} 17$; Longitude $=-0^{\prime \prime} \cdot 11$; Aximuth $=-8^{\prime \prime \cdot 23}$; Height $=11$ feot ; side $=-1 \cdot 8$ inches per mile.

[^4]:    * Note-7his figure in bounded on the north by the enstern half of the line from Calcutta to Karíchi ; on the east, by the Comat line frem Calculta to Sizagnpatam; on the smith, by tho caatern hulf of the line from Vizagapatani to Bombry; and on the mest, by the Indian midde meridian of $78^{\circ}$ (soe Inder Chart of Triangulation given with this repurt).

[^5]:    This qualrangle is neresarily of wood; ollermise it generally resemblod the one of iron for Maps in the Ordnance Sursey Ullles, Southampton.

[^6]:    - This term is very npt: it clearly takes its nomo from the fact that if the tho clocks were recording true local sidereal times $n$ singlo such doubly-recorded signal wond give the difference of longitude-subject of course to corrections for relay and lime retardation-alhough thay aro not eent for that purpose. J. H.

[^7]:    *From pmrn. 10 of Mr Beyt's Report of tho Kovenuo Setilement of the Broach Taluku, No. 1025, dated 20th Octuber
    1871.

    Publielied by Government of Bombay.

[^8]:    * Tide para. 12 of Mr. Hejtia Keport, No. 1025 of 20th Octaber 1871.

[^9]:    - The Agures for Nopember and December lave been added from later reporta by desire of the Superintendent.

